Derivatives of the closo-Decaborate Anion with Pendant Functional Groups as Inhibitors of Viral Replication

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction between the 1,4-dioxane derivative of the closo-decaborate anion [2-B10H9O(CH2)4O]– with cyanide, hydrophthalate, and hydroiminoacetate ions has been studied. Alkali metal salts (K, Na, and Cs) of the closo-decaborate anion derivatives with pendant groups –NHCH2CH2NH2-, –OOC(o-C6H4)COOH-, –OOCCH2NHCH2COOH-, –OCH2CH2OH-, –CN-, –SCN-, and –SH- have been isolated. All compounds have been shown to have extremely low cytotoxicity (CT50 ~ 1000 μg/mL). It has been found that compounds Na2[B10H9O(CH2)2O(CH2)2SCN] and Na2[B10H9O(CH2)2O(CH2)2CN] exhibit activity and selectivity in vitro against the modern strain of SARS-CoV-2 coronavirus (IC50 312 and 625 μg/mL, respectively). In relation to influenza A virus and rabies virus, the compounds show weak antiviral activity at high concentrations (1250 μg/mL), i.e. show no selective effect on the reproduction of these viruses.

About the authors

T. V Grebennikova

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation

Email: cat1983@yandex.com
123098, Moscow, Russia

V. V. Avdeeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: cat1983@yandex.com
119991, Moscow, Russia

E. A. Malinina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: cat1983@yandex.com
119991, Moscow, Russia

K. Yu. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Email: cat1983@yandex.ru
119991, Moscow, Russia; 119571, Moscow, Russia

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

E. Yu. Matveev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Email: cat1983@yandex.ru
119991, Moscow, Russia; 119571, Moscow, Russia

T. M. Garaev

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation

Email: cat1983@yandex.com
123098, Moscow, Russia

S. S. Novikov

Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Email: cat1983@yandex.com
119571, Moscow, Russia

A. I. Nichugovskii

Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Email: cat1983@yandex.com
119571, Moscow, Russia

I. E. Sokolov

Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Email: cat1983@yandex.com
119571, Moscow, Russia

V. F. Larichev

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation

Email: cat1983@yandex.com
123098, Moscow, Russia

V. V. Lebedeva

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation

Author for correspondence.
Email: cat1983@yandex.com
123098, Moscow, Russia

References

  1. Mahfouz N., Abi Ghaida F., El Hajj Z. et al. // ChemistrySelect. 2022. V. 7. № 21. P. e202200770. https://doi.org/10.1002/slct.202200770
  2. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V.75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
  3. Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. № 6. P. 679. https://doi.org/10.1135/cccc20020679
  4. Матвеев Е.Ю., Кубасов А.С., Разгоняева Г.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 858.
  5. Нелюбин А.В., Клюкин И.Н., Жданов А.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 134.
  6. Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1750. https://doi.org/10.1134/S0036023619140043
  7. Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
  8. Акимов С.С., Матвеев Е.Ю., Разгоняева Г.А. и др. // Изв. АН. Сер. хим. 2010. № 2. С. 364.
  9. Klyukin I.N., Zhdanov A.P., Matveev E.Yu. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
  10. Klyukin I.N., Kubasov A.S., Limarev I.P. et al. // Polyhedron. 2015. V. 101. P. 215. https://doi.org/10.1016/j.poly.2015.09.025
  11. Клюкин И.Н., Воинова В.В., Селиванов Н.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1536.
  12. Нелюбин А.В., Соколов М.С., Селиванов Н.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1562.
  13. Нелюбин А.В., Селиванов Н.А., Клюкин И.Н. и др. // Журн. неорган. химии. 2022. Т. 66. № 9. С. 1297.
  14. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
  15. Голубев А.В., Кубасов А.С., Турышев Е.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1198.
  16. Kubasov A.S., Matveev E.Y., Turyshev E.S. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 277. https://doi.org/10.1016/j.ica.2018.03.013
  17. Zhdanov A.P., Klyukin I.N., Bykov A.Y. et al. // Polyhedron. 2017. V. 123. P. 176. https://doi.org/10.1016/j.poly.2016.11.035
  18. Кубасов А.С., Матвеев Е.Ю., Турышев Е.С. и др. // Докл. АН. 2017. Т. 477. № 3. С. 307.
  19. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur, and Silicon and the Related Elements. 2019. P. 983. https://doi.org/10.1080/10426507.2019.1631312
  20. Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
  21. Матвеев Е.Ю., Левицкая В.Я., Новиков С.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1717.
  22. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 8. P. 977. https://doi.org/10.1039/B715363E
  23. Orlova A.V., Kondakov N.N., Kimel B.G. et al. // Appl. Organomet. Chem. 2007. V. 21. № 2. P. 98. https://doi.org/10.1002/aoc.1151
  24. Матвеев Е.Ю., Акимов С.С., Кубасов А.С. и др. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 827.
  25. Матвеев Е.Ю., Лимарев И.П., Ничуговский А.И. и др. // Журн. неорган. химии. 2019. Т. 64. № 8. С. 811. [Matveev E.Y., Limarev I.P., Nichugovskii A.I. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 977. https://doi.org/10.1134/S0036023619080084]
  26. Кубасов А.С., Матвеев Е.Ю., Ретивов В.М. и др. // Изв. АН. Сер. хим. 2014. № 1. С. 187.
  27. Grin M.A., Semioshkin A.A., Titeev R.A. et al. // Mendeleev Commun. 2007. V. 17. P. 14. https://doi.org/10.1016/j.mencom.2007.01.005
  28. Матвеев Е.Ю., Новиков С.С., Левицкая В.Я. и др. // Тонкие химические технологии. 2022. Т. 17. № 5. С. 427.
  29. Kikuchi S., Kanoh D., Sato S. et al. // J. Controlled Release. 2016. V. 237. P. 160. https://doi.org/10.1016/j.jconrel.2016.07.017
  30. Laskova J., Kozlova A., Ananyev I. et al. // J. Organomet. Chem. 2017. V. 834. P. 64. https://doi.org/10.1016/j.jorganchem.2017.02.009
  31. Serdyukov A., Kosenko I., Druzina A. et al. // J. Organomet. Chem. 2021. V. 946. P. 121905. https://doi.org/10.1016/j.jorganchem.2021.121905
  32. Imperio D., Muz B., Azab A.K. et al. // Eur. J. Org. Chem. 2019. V. 2019. № 43. P. 7228. https://doi.org/10.1002/ejoc.201901412
  33. Sivaev I.B. // Chem. Heterocycl. Comp. 2017. V. 53. P. 638. https://doi.org/10.1007/s10593-017-2106-9
  34. Zhenguo Huang, Suning Wang, Rian D. Dewhurst et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 8800. https://doi.org/10.1002/anie.201911108
  35. Zhang Z., Zhao Z., Wang B., Zhang J. // Green Energy & Environment. 2021. V. 6. № 6. P. 794. https://doi.org/10.1016/j.gee.2020.12.002
  36. Ali F., Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
  37. Hu K. et al. // Coord. Chem. Rev. 2020. V. 405. P. 213139.
  38. Zharkov D.O., Yudkina A.V., Riesebeck T. et al. // Am. J. Cancer Research. 2021. V. 11. № 10. P. 4668.
  39. Малинина Е.А., Гоева Л.В., Бузанов Г.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 11. С. 1136.
  40. Малинина Е.А., Гоева Л.В., Бузанов Г.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 124.
  41. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  42. Matveev E.Yu., Avdeeva V.V., Zhizhin K.Yu. et al. // Inorganics. 2022. V. 10. P. 298. https://doi.org/10.3390/inorganics10120238
  43. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  44. Авдеева В.В., Гараев Т.М., Малинина Е.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 33.
  45. Cebula J., Fink K., Boratyński J. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214940. https://doi.org/10.1016/j.ccr.2022.214940
  46. Fink K., Uchman M. // Coord. Chem. Rev. 2021. V. 431. P. 213684. https://doi.org/10.1016/j.ccr.2020.213684
  47. Kaniowski D., Kuli K., Suwar J. et al. // Int. J. Mol. Sci. 2022. V. 23. № 20. P. 12190. https://doi.org/10.3390/ijms232012190
  48. Жижин К.Ю., Мустяца В.Н., Малинина Е.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 2. С. 221.
  49. Akimov S.S., Matveev E.Y., Kubasov A.S. et al. // Russ. Chem. Bull. 2013. V. 62. № 6. P. 1417. https://doi.org/10.1007/s11172-013-0204-0
  50. Matveev E.Y., Razgonyaeva G.A., Mustyatsa V.N. et al. // Russ. Chem. Bull. 2010. V.59. № 3. P. 556. https://doi.org/10.1007/s11172-010-0125-0
  51. Органикум. В 2-х т. Пер. с нем. Т. 1. М.: Мир, 1992.
  52. Лебедева В.В., Федякина И.Т., Латышев О.Е. и др. // Эпидемиология и вакцинопрофилактика. 2021. Т. 20. № 3. С. 83. https://doi.org/10.31631/2073-3046-2021-20-3-83-90
  53. Shibnev V.A., Garaev T.M., Finogenova M.P. et al. // Pharmaceutical Chem. J. 2012. V. 46. № 1. P. 1. https://doi.org/10.1007/s11094-012-0723-2
  54. WHO, International Laboratory For Biological Standards, Copengagen, Denmark: Second International Standard for Rabies Immunoglobulin. 30 IU/ml of Rabies Antibodies in the amp (OIE).
  55. De Cesco S., Kurian J., Dufresne C. et al. // Eur. J. Med. Chem. 2017. V. 138. P. 96. https://doi.org/10.1016/j.ejmech.2017.06.019
  56. Guterman L. // Chem. Eng. News. 2011. V. 89. № 36. P. 19.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (91KB)
3.

Download (221KB)

Copyright (c) 2023 Е.Ю. Матвеев, Т.М. Гараев, С.С. Новиков, А.И. Ничуговский, И.Е. Соколов, В.Ф. Ларичев, В.В. Лебедева, Т.В. Гребенникова, В.В. Авдеева, Е.А. Малинина, К.Ю. Жижин, Н.Т. Кузнецов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies