Solid-phase synthesis of ZnFe2O4 and electrochemical properties
- Authors: Efremov V.V.1,2, Korneikov R.I.1,3, Aksenova S.V.3, Kravchenko O.E.3, Akhmetov O.I.1, Tananaev I.G.3, Shichalin O.O.1
-
Affiliations:
- Sakhalin State University
- Institute of Industrial Problems of Ecology of the North
- Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
- Issue: Vol 70, No 2 (2025)
- Pages: 181-190
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289427
- DOI: https://doi.org/10.31857/S0044457X25020059
- EDN: https://elibrary.ru/ICYBYE
- ID: 289427
Cite item
Abstract
The synthesis and electrophysical properties of spinel ferrite ZnFe₂O₄ obtained by solid-phase interaction using mechanoactivation have been considered in this study. The study encompasses a comprehensive analysis of the phase composition and crystal structure, employing X-ray phase analysis, thermogravimetric analysis, and differential thermal analysis to elucidate the thermal effects and synthesis steps. Impedance spectroscopy was employed to investigate the electrophysical properties, thereby confirming the considerable impact of firing temperature on electrical conductivity. The results demonstrate that the electrical conductivity of the material increases by an order of magnitude when the firing temperature is increased up to 1000°C. This suggests the potential for the use of ZnFe2O4 as a cathode material for lithium-ion and metal-ion batteries. This work emphasises the importance of optimising synthesis conditions to achieve high performance of electrode materials.
Full Text

About the authors
V. V. Efremov
Sakhalin State University; Institute of Industrial Problems of Ecology of the North
Author for correspondence.
Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000; Apatity, 184209
R. I. Korneikov
Sakhalin State University; Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000; Apatity, 184209
S. V. Aksenova
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
Russian Federation, Apatity, 184209
O. E. Kravchenko
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
Russian Federation, Apatity, 184209
O. I. Akhmetov
Sakhalin State University
Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000
I. G. Tananaev
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
Russian Federation, Apatity, 184209
O. O. Shichalin
Sakhalin State University
Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000
References
- Аренков И.А., Иванова Д.В., Жеребчикова П.Е. // Экономика, предпринимательство и право. 2023. Т. 13. № 12. С. 5963. https://doi.org/10.18334/epp.13.12.119994
- https://www.mordorintelligence.com/ru/industry-reports/battery-market (дата обращения 23.10.2024).
- Hata M., Tanaka T., Kato D. et al. // Electrochem. 2021 V. 89. Р. 223. https://doi.org/10.5796/electrochemistry.20-65151
- Кедринский И.А., Яковлев В.Г. Li-ионные аккумуляторы. Красноярск: Платина, 2002. 268 с.
- Bianchinia M., Roca-Ayatsa M., Hartmanna P. et al. // Angew. Chem. Int. Ed. 2018. V 31. № 58. Р. 1. https://doi.org/10.1002/anie.201812472
- Wang Y., Shadow Huang H.-Y. // Mater. Res. Soc. Symp. Proc. 2011. V. 1363. P. 530. https://doi.org/10.1557/opl.2011.1363
- Tsivadze A.Yu., Kulova T.L., Skundin A.M. // Prot. Met. Phys. Chem. Surf. 2013. V. 49. № 2. P. 145. https://doi.org/10.1134/S2070205113020081
- Deng S., Xue L., Li Y. et al. // J. Electrochem. Energy Convers. Storage. 2019. V. 16. Р. 031004-1. https://doi.org/10.1115/1.4042552
- Монаджеми М., Моллаамин Ф., Ту П.Т. и др. // Электрохимия. 2020. T. 56. № 8. С. 737. https://doi.org/10.31857/S042485702003007X
- Mesnier A., Manthiram A. // ACS Appl. Mater. Interfaces. 2020. V. 47. № 12. Р. 52826. https://doi.org//10.1021/acsami.0c16648
- Ryu H.-H., Park G.-T., Yoon C.S. et al. // J. Mater. Chem. A. 2019. V. 31. № 7. Р. 18580. https://doi.org/10.1039/c9ta06402h
- Yoon C.S., Choi M.-J., Jun D.-W. et al. // Chem. Mater. 2018. № 30. Р. 1808. https://doi.org/10.1021/acs.chemmater.8b00619
- Kurc B. // Int. J. Electrochem. Sci. 2018. № 13. Р. 5938. https://doi.org/10.20964/2018.06.46
- Naskar S., Deepa M. // Batteries Supercaps. 2022. V. 5. P. e202100364 https://doi.org/10.1002/batt.202100364
- Li S., Qin L., Li L. et al. // Mater. Today Commun. 2021. V. 27. P. 102271. https://doi.org/10.1016/j.mtcomm.2021.102271
- Liu Y., Li C., Xu J. et al. // Nano Energy. 2020. V. 67. P. 104211. https://doi.org/10.1016/j.nanoen.2019.104211
- Blanc L.E., Kundu D., Nazar L.F. // Joule. 2020. P. 771. https://doi.org/10.1016/j.joule.2020.03.002
- Aurbach D., Lu Z., Schechter A. et al. // Nature. 2000. V. 407. № 6805. P. 724. https://doi.org/10.1038/35037553
- Tang H., Tang H., Peng Z. et al. // Electrochem. Energy Rev. 2018. V. 1. № 2. P. 169. https://doi.org/org/10.1007/s41918-018-0007-y
- Liu S., Mao J., Pang W.K. et al. // Adv. Funct. Mater. 2021. P. 2104281. https://doi.org/10.1002/adfm.202104281
- Morkhova Ye.A., Kabanov A.A., Leisegang T. // J. Phys.: Conf. Ser. 2021. V. 1967. P. 012059. https://doi.org/10.1088/1742-6596/1967/1/012059
- Bohra M., Alman V., Arras R. // Nanomaterials. 2021. V. 11. P. 1286. https://doi.org/10.3390/nano11051286
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
- Blatov V.A. // Crystallogr. Rev. 2004. V. 10. № 4. P. 249. https://doi.org/10.1080/08893110412331323170
- Korneykov R., Efremov V., Shcherbina O. et al. // Ferroelectrics. 2023. V. 615. № 1. P. 266. https://doi.org/10.1080/00150193.2023.2262652
Supplementary files
