Электрохимические свойства ZnFe2O4, синтезированного методом твердофазного взаимодействия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрен синтез и электрофизические свойства феррита шпинели ZnFe2O4, полученного методом твердофазного взаимодействия с использованием механоактивации. Исследование включает комплексный анализ фазового состава и кристаллической структуры с помощью рентгенофазового, термогравиметрического и дифференциально-термического анализов, что позволяет выявить термические эффекты и этапы синтеза. Импедансная спектроскопия используется для изучения электрофизических свойств, подтверждая значительное влияние температуры обжига на электрическую проводимость. Результаты показывают, что при повышении температуры обжига до 1000°C электропроводность материала увеличивается на порядок. Это открывает перспективы использования ZnFe2O4 в качестве катодного материала для литий-ионных и металл-ионных аккумуляторов. Данная работа подчеркивает важность оптимизации условий синтеза для достижения высоких характеристик электродных материалов.

Полный текст

Доступ закрыт

Об авторах

В. В. Ефремов

Сахалинский государственный университет; Институт промышленных проблем экологии Севера

Автор, ответственный за переписку.
Email: v.efremov@ksc.ru
Россия, 693000, Южно-Сахалинск, пр-т Коммунистический, 33; 184209, Апатиты, Академгородок, 14а

Р. И. Корнейков

Сахалинский государственный университет; Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева

Email: v.efremov@ksc.ru
Россия, 693000, Южно-Сахалинск, пр-т Коммунистический, 33; 184209, Апатиты, Академгородок, 26а

С. В. Аксенова

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева

Email: v.efremov@ksc.ru
Россия, 184209, Апатиты, Академгородок, 26а

О. Э. Кравченко

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева

Email: v.efremov@ksc.ru
Россия, 184209, Апатиты, Академгородок, 26а

О. И. Ахметов

Сахалинский государственный университет

Email: v.efremov@ksc.ru
Россия, 693000, Южно-Сахалинск, пр-т Коммунистический, 33

И. Г. Тананаев

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева

Email: v.efremov@ksc.ru
Россия, 184209, Апатиты, Академгородок, 26а

О. O. Шичалин

Сахалинский государственный университет

Email: v.efremov@ksc.ru
Россия, 693000, Южно-Сахалинск, пр-т Коммунистический, 33

Список литературы

  1. Аренков И.А., Иванова Д.В., Жеребчикова П.Е. // Экономика, предпринимательство и право. 2023. Т. 13. № 12. С. 5963. https://doi.org/10.18334/epp.13.12.119994
  2. https://www.mordorintelligence.com/ru/industry-reports/battery-market (дата обращения 23.10.2024).
  3. Hata M., Tanaka T., Kato D. et al. // Electrochem. 2021 V. 89. Р. 223. https://doi.org/10.5796/electrochemistry.20-65151
  4. Кедринский И.А., Яковлев В.Г. Li-ионные аккумуляторы. Красноярск: Платина, 2002. 268 с.
  5. Bianchinia M., Roca-Ayatsa M., Hartmanna P. et al. // Angew. Chem. Int. Ed. 2018. V 31. № 58. Р. 1. https://doi.org/10.1002/anie.201812472
  6. Wang Y., Shadow Huang H.-Y. // Mater. Res. Soc. Symp. Proc. 2011. V. 1363. P. 530. https://doi.org/10.1557/opl.2011.1363
  7. Tsivadze A.Yu., Kulova T.L., Skundin A.M. // Prot. Met. Phys. Chem. Surf. 2013. V. 49. № 2. P. 145. https://doi.org/10.1134/S2070205113020081
  8. Deng S., Xue L., Li Y. et al. // J. Electrochem. Energy Convers. Storage. 2019. V. 16. Р. 031004-1. https://doi.org/10.1115/1.4042552
  9. Монаджеми М., Моллаамин Ф., Ту П.Т. и др. // Электрохимия. 2020. T. 56. № 8. С. 737. https://doi.org/10.31857/S042485702003007X
  10. Mesnier A., Manthiram A. // ACS Appl. Mater. Interfaces. 2020. V. 47. № 12. Р. 52826. https://doi.org//10.1021/acsami.0c16648
  11. Ryu H.-H., Park G.-T., Yoon C.S. et al. // J. Mater. Chem. A. 2019. V. 31. № 7. Р. 18580. https://doi.org/10.1039/c9ta06402h
  12. Yoon C.S., Choi M.-J., Jun D.-W. et al. // Chem. Mater. 2018. № 30. Р. 1808. https://doi.org/10.1021/acs.chemmater.8b00619
  13. Kurc B. // Int. J. Electrochem. Sci. 2018. № 13. Р. 5938. https://doi.org/10.20964/2018.06.46
  14. Naskar S., Deepa M. // Batteries Supercaps. 2022. V. 5. P. e202100364 https://doi.org/10.1002/batt.202100364
  15. Li S., Qin L., Li L. et al. // Mater. Today Commun. 2021. V. 27. P. 102271. https://doi.org/10.1016/j.mtcomm.2021.102271
  16. Liu Y., Li C., Xu J. et al. // Nano Energy. 2020. V. 67. P. 104211. https://doi.org/10.1016/j.nanoen.2019.104211
  17. Blanc L.E., Kundu D., Nazar L.F. // Joule. 2020. P. 771. https://doi.org/10.1016/j.joule.2020.03.002
  18. Aurbach D., Lu Z., Schechter A. et al. // Nature. 2000. V. 407. № 6805. P. 724. https://doi.org/10.1038/35037553
  19. Tang H., Tang H., Peng Z. et al. // Electrochem. Energy Rev. 2018. V. 1. № 2. P. 169. https://doi.org/org/10.1007/s41918-018-0007-y
  20. Liu S., Mao J., Pang W.K. et al. // Adv. Funct. Mater. 2021. P. 2104281. https://doi.org/10.1002/adfm.202104281
  21. Morkhova Ye.A., Kabanov A.A., Leisegang T. // J. Phys.: Conf. Ser. 2021. V. 1967. P. 012059. https://doi.org/10.1088/1742-6596/1967/1/012059
  22. Bohra M., Alman V., Arras R. // Nanomaterials. 2021. V. 11. P. 1286. https://doi.org/10.3390/nano11051286
  23. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
  24. Blatov V.A. // Crystallogr. Rev. 2004. V. 10. № 4. P. 249. https://doi.org/10.1080/08893110412331323170
  25. Korneykov R., Efremov V., Shcherbina O. et al. // Ferroelectrics. 2023. V. 615. № 1. P. 266. https://doi.org/10.1080/00150193.2023.2262652

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема получения образцов ZnFe2O4 твердофазным методом.

Скачать (108KB)
3. Рис. 2. Температурные зависимости ДТА и ТГ для реакционной смеси ZnO–Fe2O3.

Скачать (47KB)
4. Рис. 3. Кристаллическая структура феррита цинка ZnFe2O4.

Скачать (84KB)
5. Рис. 4. Рентгенограммы образцов феррита шпинели ZnFe2O4, синтезированных при температурах 800 (а) и 900°С (б).

Скачать (43KB)
6. Рис. 5. Пример полиэдра Вороного, построенного для аниона кислорода.

Скачать (103KB)
7. Рис. 6. 3D-карта миграции катиона Zn2+ в кристаллической структуре ZnFe2O4.

Скачать (96KB)
8. Рис. 7. Диаграммы комплексного импеданса ZnFe2O4, синтезированного при температурах 800 (а), 900 (б) и 1000°С (в).

Скачать (59KB)
9. Рис. 8. Эквивалентная схема замещения для образцов, синтезированных при температурах 800 и 900°С.

10. Рис. 9. Эквивалентная схема замещения для образца, синтезированного при температуре 1000°С.

11. Рис. 10. Температурная зависимость электропроводимости образца феррита шпинели, синтезированного при температуре 900°С.

Скачать (15KB)
12. Рис. 11. Температурная зависимость электропроводимости образца феррита шпинели, синтезированного при температуре 1000°С.

Скачать (17KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».