Solid-phase synthesis of ZnFe2O4 and electrochemical properties
- 作者: Efremov V.V.1,2, Korneikov R.I.1,3, Aksenova S.V.3, Kravchenko O.E.3, Akhmetov O.I.1, Tananaev I.G.3, Shichalin O.O.1
-
隶属关系:
- Sakhalin State University
- Institute of Industrial Problems of Ecology of the North
- Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
- 期: 卷 70, 编号 2 (2025)
- 页面: 181-190
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289427
- DOI: https://doi.org/10.31857/S0044457X25020059
- EDN: https://elibrary.ru/ICYBYE
- ID: 289427
如何引用文章
详细
The synthesis and electrophysical properties of spinel ferrite ZnFe₂O₄ obtained by solid-phase interaction using mechanoactivation have been considered in this study. The study encompasses a comprehensive analysis of the phase composition and crystal structure, employing X-ray phase analysis, thermogravimetric analysis, and differential thermal analysis to elucidate the thermal effects and synthesis steps. Impedance spectroscopy was employed to investigate the electrophysical properties, thereby confirming the considerable impact of firing temperature on electrical conductivity. The results demonstrate that the electrical conductivity of the material increases by an order of magnitude when the firing temperature is increased up to 1000°C. This suggests the potential for the use of ZnFe2O4 as a cathode material for lithium-ion and metal-ion batteries. This work emphasises the importance of optimising synthesis conditions to achieve high performance of electrode materials.
全文:

作者简介
V. Efremov
Sakhalin State University; Institute of Industrial Problems of Ecology of the North
编辑信件的主要联系方式.
Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk, 693000; Apatity, 184209
R. Korneikov
Sakhalin State University; Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk, 693000; Apatity, 184209
S. Aksenova
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity, 184209
O. Kravchenko
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity, 184209
O. Akhmetov
Sakhalin State University
Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk, 693000
I. Tananaev
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials
Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity, 184209
O. Shichalin
Sakhalin State University
Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk, 693000
参考
- Аренков И.А., Иванова Д.В., Жеребчикова П.Е. // Экономика, предпринимательство и право. 2023. Т. 13. № 12. С. 5963. https://doi.org/10.18334/epp.13.12.119994
- https://www.mordorintelligence.com/ru/industry-reports/battery-market (дата обращения 23.10.2024).
- Hata M., Tanaka T., Kato D. et al. // Electrochem. 2021 V. 89. Р. 223. https://doi.org/10.5796/electrochemistry.20-65151
- Кедринский И.А., Яковлев В.Г. Li-ионные аккумуляторы. Красноярск: Платина, 2002. 268 с.
- Bianchinia M., Roca-Ayatsa M., Hartmanna P. et al. // Angew. Chem. Int. Ed. 2018. V 31. № 58. Р. 1. https://doi.org/10.1002/anie.201812472
- Wang Y., Shadow Huang H.-Y. // Mater. Res. Soc. Symp. Proc. 2011. V. 1363. P. 530. https://doi.org/10.1557/opl.2011.1363
- Tsivadze A.Yu., Kulova T.L., Skundin A.M. // Prot. Met. Phys. Chem. Surf. 2013. V. 49. № 2. P. 145. https://doi.org/10.1134/S2070205113020081
- Deng S., Xue L., Li Y. et al. // J. Electrochem. Energy Convers. Storage. 2019. V. 16. Р. 031004-1. https://doi.org/10.1115/1.4042552
- Монаджеми М., Моллаамин Ф., Ту П.Т. и др. // Электрохимия. 2020. T. 56. № 8. С. 737. https://doi.org/10.31857/S042485702003007X
- Mesnier A., Manthiram A. // ACS Appl. Mater. Interfaces. 2020. V. 47. № 12. Р. 52826. https://doi.org//10.1021/acsami.0c16648
- Ryu H.-H., Park G.-T., Yoon C.S. et al. // J. Mater. Chem. A. 2019. V. 31. № 7. Р. 18580. https://doi.org/10.1039/c9ta06402h
- Yoon C.S., Choi M.-J., Jun D.-W. et al. // Chem. Mater. 2018. № 30. Р. 1808. https://doi.org/10.1021/acs.chemmater.8b00619
- Kurc B. // Int. J. Electrochem. Sci. 2018. № 13. Р. 5938. https://doi.org/10.20964/2018.06.46
- Naskar S., Deepa M. // Batteries Supercaps. 2022. V. 5. P. e202100364 https://doi.org/10.1002/batt.202100364
- Li S., Qin L., Li L. et al. // Mater. Today Commun. 2021. V. 27. P. 102271. https://doi.org/10.1016/j.mtcomm.2021.102271
- Liu Y., Li C., Xu J. et al. // Nano Energy. 2020. V. 67. P. 104211. https://doi.org/10.1016/j.nanoen.2019.104211
- Blanc L.E., Kundu D., Nazar L.F. // Joule. 2020. P. 771. https://doi.org/10.1016/j.joule.2020.03.002
- Aurbach D., Lu Z., Schechter A. et al. // Nature. 2000. V. 407. № 6805. P. 724. https://doi.org/10.1038/35037553
- Tang H., Tang H., Peng Z. et al. // Electrochem. Energy Rev. 2018. V. 1. № 2. P. 169. https://doi.org/org/10.1007/s41918-018-0007-y
- Liu S., Mao J., Pang W.K. et al. // Adv. Funct. Mater. 2021. P. 2104281. https://doi.org/10.1002/adfm.202104281
- Morkhova Ye.A., Kabanov A.A., Leisegang T. // J. Phys.: Conf. Ser. 2021. V. 1967. P. 012059. https://doi.org/10.1088/1742-6596/1967/1/012059
- Bohra M., Alman V., Arras R. // Nanomaterials. 2021. V. 11. P. 1286. https://doi.org/10.3390/nano11051286
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
- Blatov V.A. // Crystallogr. Rev. 2004. V. 10. № 4. P. 249. https://doi.org/10.1080/08893110412331323170
- Korneykov R., Efremov V., Shcherbina O. et al. // Ferroelectrics. 2023. V. 615. № 1. P. 266. https://doi.org/10.1080/00150193.2023.2262652
补充文件
