Lanthanum Propionate Monohydrate and Its Mixed-Ligand Complex with Diethylenetriamine: Synthesis, Crystal Structure, and Use in Chemical Solution Deposition of Lanthanum Nickelate Thin Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A mixed-ligand complexation approach implying the reaction of metal carboxylates with the chelating tridendate diethylenetriamine (DETA) ligand has been applied to modify the structure of the layered coordination polymer based on lanthanum propionate (Prop). Lanthanum propionate monohydrate has been synthesized and characterized by a set of analytical methods to determine its crystal structure and chemical composition. The crystal structures of lanthanum propionate and nickel propionate complexes with DETA have additionally been determined. The native lanthanum propionate monohydrate [La2(H2O)2Prop6] has been proven to have a 2D-layered topology, whereas the mixed-ligand complex [La2(DETA)Prop6] ⋅ MeCN (where MeCN stands for acetonitrile) has a chain structure. A chemical solution deposition procedure has been developed to produce phase-pure oriented LaNiO3 thin films. These films exhibit metallic conductivity and can be used as conductive sublayers.

About the authors

M. P. Kendin

Chemistry Department, Moscow State University; Materials Science Department, Moscow State University

Email: tsymbarenko@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

R. A. Gashigullin

Materials Science Department, Moscow State University

Email: tsymbarenko@gmail.com
119991, Moscow, Russia

I. A. Martynova

Chemistry Department, Moscow State University

Email: tsymbarenko@gmail.com
119991, Moscow, Russia

A. A. Anosov

Chemistry Department, Moscow State University; Materials Science Department, Moscow State University

Email: tsymbarenko@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

D. M. Tsymbarenko

Chemistry Department, Moscow State University

Author for correspondence.
Email: tsymbarenko@gmail.com
119991, Moscow, Russia

References

  1. Eliseeva S. V., Bünzli J.-C.G. // Chem. Soc. Rev. 2010. V. 39. № 1. P. 189. https://doi.org/10.1039/B905604C
  2. Sessoli R., Powell A.K. // Coord. Chem. Rev. 2009. V. 253. № 19–20. P. 2328. https://doi.org/10.1016/j.ccr.2008.12.014
  3. Woodruff D.N., Winpenny R.E.P., Layfield R.A. // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
  4. Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
  5. Schneller T., Waser R., Kosec M. et al. // Chemical Solution Deposition of Functional Oxide Thin Films. Vienna: Springer Vienna, 2013. 796 p. https://doi.org/10.1007/978-3-211-99311-8
  6. Vermeir P., Cardinael I., Bäcker M. et al. // Supercond. Sci. Technol. 2009. V. 22. № 7. P. 075009. https://doi.org/10.1088/0953-2048/22/7/075009
  7. Kendin M., Tsymbarenko D. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 367. https://doi.org/10.1016/j.jaap.2019.04.016
  8. Rasi S., Silveri F., Ricart S. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 312. https://doi.org/10.1016/j.jaap.2019.04.008
  9. Sheehan C., Jung Y., Holesinger T. et al. // Appl. Phys. Lett. 2011. V. 98. № 7. P. 071907. https://doi.org/10.1063/1.3554754
  10. Schwartz R.W. // Chem. Mater. 1997. V. 9. № 11. P. 2325. https://doi.org/10.1021/cm970286f
  11. Tsymbarenko D.M., Martynova I.A., Malkerova I.P. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 662. https://doi.org/10.1134/S1070328416100043
  12. Grivel J.-C. // J. Anal. Appl. Pyrolysis. 2010. V. 89. № 2. P. 250. https://doi.org/10.1016/j.jaap.2010.08.011
  13. Grivel J.C. // J. Therm. Anal. Calorim. 2012. V. 109. № 1. P. 81. https://doi.org/10.1007/s10973-011-1745-9
  14. Grivel J.C. // J. Therm. Anal. Calorim. 2014. V. 115. № 2. P. 1253. https://doi.org/10.1007/s10973-013-3467-7
  15. Grivel J.C. // J. Anal. Appl. Pyrolysis. 2013. V. 101. P. 185. https://doi.org/10.1016/j.jaap.2013.01.011
  16. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. – Cryst. Mater. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  17. Sheldrick G.M. // SHELXTL Ver. 5.10, Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 1998.
  18. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  19. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  20. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  21. Casanova D., Llunell M., Alemany P. et al. // Chem. - A Eur. J. 2005. V. 11. № 5. P. 1479. https://doi.org/10.1002/chem.200400799
  22. Scales N., Zhang Y., Bhadbhade M. et al. // Polyhedron. 2015. V. 102. P. 130. https://doi.org/10.1016/j.poly.2015.07.065
  23. Grivel J.C., Zhao Y., Tang X. et al. // J. Anal. Appl. Pyrolysis. 2020. V. 150. № August. P. 104898. https://doi.org/10.1016/j.jaap.2020.104898
  24. Kendin M., Tsymbarenko D. // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110
  25. Martynova I.A., Tsymbarenko D.M., Kuz’mina N.P. // Russ. J. Coord. Chem. 2014. V. 40. № 8. P. 565. https://doi.org/10.1134/S1070328414080077
  26. Bußkamp H., Deacon G.B., Hilder M. et al. // CrystEngComm. 2007. V. 9. № 5. P. 394. https://doi.org/10.1039/B700980A
  27. Tsymbarenko D., Martynova I., Grebenyuk D. et al. // J. Solid State Chem. 2018. V. 258. № December. 2017. P. 876. https://doi.org/10.1016/j.jssc.2017.12.024
  28. Dieters D., Meyer G. // Z. Anorg. Allg. Chem. 1996. V. 622. № 2. P. 325. https://doi.org/10.1002/zaac.19966220220
  29. Grebenyuk D., Ryzhkov N., Tsymbarenko D. // J. Fluor. Chem. 2017. V. 202. № September. P. 82. https://doi.org/10.1016/j.jfluchem.2017.08.014
  30. Kepert C.J., Wei-Min L., Junk P.C. et al. // Aust. J. Chem. 1999. V. 52. № 6. P. 437. https://doi.org/10.1071/CH98041
  31. Gomez Torres S., Pantenburg I., Meyer G. // Z. Anorg. Allg. Chem. 2006. V. 632. № 12–13. P. 1989. https://doi.org/10.1002/zaac.200600154
  32. Zhang Y., Bhadbhade M., Scales N. et al. // J. Solid State Chem. 2014. V. 219. P. 1. https://doi.org/10.1016/j.jssc.2014.07.007
  33. Rühlig K., Abylaikhan A., Aliabadi A. et al. // Dalton Trans. 2017. V. 46. № 12. P. 3963. https://doi.org/10.1039/C6DT04556A

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (79KB)
3.

Download (133KB)
4.

Download (637KB)
5.

Download (462KB)
6.

Download (215KB)
7.

Download (131KB)
8.

Download (763KB)
9.

Download (84KB)

Copyright (c) 2023 М.П. Кендин, Р.А. Гашигуллин, И.А. Мартынова, А.А. Аносов, Д.М. Цымбаренко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».