Role of SiO2 in the Formation of Hydrate Phases in the Presence of СН4/CO2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of silicon dioxide nanoparticles on the formation of hydrate phases in the presence of CH4/CO2 has been studied. The theoretical experiment has been carried out by molecular dynamics methods at initial pressures in the system of 2.4 and 1.2 MPa and a temperature of 271 K for methane and carbon dioxide systems. The results showed that in the presence of silicon dioxide nanoparticles, the induction time of the methane hydrate formation decreased by 79%, and the amount of methane trapped in the hydrate cavity increased by 55.8% at a pressure of 2.4 MPa. In the presence of silicon dioxide nanoparticles, the induction time for the formation of carbon dioxide hydrate decreased by 62%, and the amount of carbon dioxide trapped in the hydrate cavity increased by 27.8% at a pressure of 1.2 MPa.

About the authors

Yu. Yu. Bozhko

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: bozhko@niic.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

R. K. Zhdanov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: bozhko@niic.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

K. V. Gets

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: bozhko@niic.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

O. S. Subbotin

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: bozhko@niic.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

V. R. Belosludov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: bozhko@niic.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

References

  1. Baidakov V.G. // Russ. J. Gen. Chem. 2022. V. 92. № 4. P. 611. https://doi.org/10.1134/S107036322204003X
  2. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
  3. Sycheva G.A. // Glass Phys. Chem. 2021. V. 47. № 1. P. S41. https://doi.org/10.1134/S1087659621070105
  4. Cheng Z., Zhao Y., Liu W. et al. // J. Natural Gas Sci. Engineer. 2020. V. 79. P. 103375. https://doi.org/10.1016/j.jngse.2020.103375
  5. Pahlavanzadeh H., Khanlarkhani M., Rezaei S. et al. // Fuel. 2019. V. 253. P. 1392. https://doi.org/10.1016/j.fuel.2019.05.010
  6. Maiti M., Ranjan R., Chaturvedi E. et al. // J. Dispersion Sci. Technol. 2021. V. 42. № 3. P. 338. https://doi.org/10.1080/01932691.2019.1680380
  7. Li A., Luo D., Jiang L. et al. // Sep. Sci. Technol. 2019. V. 54. № 15. P. 2498. https://doi.org/10.1080/01496395.2018.1548481
  8. Adibi N., Mohammadi M., Ehsani M.R. et al. // J. Natural Gas Sci. Engineer. 2020. V. 84. P. 103690. https://doi.org/10.1016/j.jngse.2020.103690
  9. Liang S., Rozmanov D., Kusalik P.G. // Phys. Chem. Chem. Phys. 2011. V. 13. № 44. P. 19856. https://doi.org/10.1039/C1CP21810G
  10. Bagherzadeh S.A., Englezos P., Alavi S. et al. // J. Phys. Chem. B. 2012. V. 116. № 10. P. 3188. https://doi.org/10.1021/jp2086544
  11. Moon C., Hawtin R.W., Rodger P.M. // Faraday Discussions. 2007. V. 136. P. 367. https://doi.org/10.1039/B618194P
  12. Prasad P.S.R., Chari V.D., Sharma D.V. et al. // Fluid Phase Equilibria. 2012. V. 318. P. 110. https://doi.org/10.1016/j.fluid.2012.01.012
  13. Moon C., Taylor P.C., Rodger P.M. // Can. J. Phys. 2003. V. 81. № 1–2. P. 451. https://doi.org/10.1139/P03-035
  14. Moon C., Taylor P.C., Rodger P.M. // J. Am. Chem. Soc. 2003. V. 125. № 16. P. 4706. https://doi.org/10.1021/ja028537v
  15. Antonov D.V., Donskoy I.G., Gaidukova O.S. et al. // Environ. Res. 2022. P. 113990. https://doi.org/10.1016/j.envres.2022.113990
  16. Antonov D.V., Donskoy I.G., Gaidukova O.S. et al. // Fuel. 2022. V. 325. P. 124771. https://doi.org/10.1016/j.fuel.2022.124771
  17. Gaidukova O., Misyura S., Razumov D. et al. // Appl. Sci. 2022. V. 12. № 12. P. 5953. https://doi.org/10.3390/app12125953
  18. Misyura S.Y., Donskoy I.G., Manakov A.Y. et al. // Flow, Turbulence and Combustion. 2022. V. 109. № 1. P. 175. https://link.springer.com/article/10.1007/ s10494-022-00325-x
  19. Semenov A.P., Mendgaziev R.I., Stoporev A.S. et al. // Chem. Eng. Sci. 2022. V. 255. P. 117670. https://doi.org/10.1016/j.ces.2022.117670
  20. Semenov A.P., Mendgaziev R.I., Stoporev A.S. et al. // Data in Brief. 2022. P. 108289. https://doi.org/10.1016/j.dib.2022.108289
  21. Semenov M.E., Pavelyev R.S., Stoporev A.S. et al. // Petroleum Chem. 2022. V. 62. № 2. P. 127. https://link.springer.com/article/10.1134/S0965544122060019
  22. Meleshkin A.V., Bartashevich M.V., Glezer V.V. // Appl. Surf. Sci. 2019. V. 493. P. 847. https://doi.org/10.1016/j.apsusc.2019.06.276
  23. Meleshkin A.V., Marasanov N.V. // J. Engineer. Thermophys. 2021. V. 30. № 4. P. 699. https://link.springer.com/article/10.1134/S1810232821040135
  24. Meleshkin A.V., Shkoldina A.A. // J. Eng. Thermophys. 2021. V. 30. № 4. P. 693. https://link.springer.com/article/10.1134/S1810232821040123
  25. Meleshkin A.V., Bartashevich M.V., Glezer V.V. et al. // J. Eng. Thermophys. 2020. V. 29. № 2. P. 264. https://link.springer.com/article/10.1134/S18102328200-20083
  26. Meleshkin A.V., Bartashevich M.V., Glezer V.V. // J. Eng. Thermophys. 2020. V. 29. № 2. P. 279. https://link.springer.com/article/10.1134/S181023282-0020101
  27. Walsh M.R., Koh C.A., Sloan E.D. et al. // Science. 2009. V. 326. № 5956. P. 1095. https://doi.org/10.1126/science.1174010
  28. Walsh M.R., Rainey J.D., Lafond P.G. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. № 44. P. 19951. https://doi.org/10.1039/C1CP21899A
  29. Walsh M.R., Beckham G.T., Koh C.A. // J. Phys. Chem. C. 2011. V. 115. № 43. P. 21241. https://doi.org/10.1021/jp206483q
  30. Jacobson L.C., Molinero V.A. // J. Phys. Chem. B. 2010. V. 114. № 21. P. 7302. https://doi.org/10.1021/jp1013576
  31. Jacobson L.C., Hujo W., Molinero V. // J. Phys. Chem. B. 2009. V. 113. № 30. P. 10298. https://doi.org/10.1021/jp903439a
  32. Skelton A.A., Fenter P., Kubicki J.D. et al. // J. Phys. Chem. C. 2011. V. 115. № 5. P. 2076. https://doi.org/10.1021/jp109446d
  33. Rodger P.M., Smith W., Forester T.R. // Fluid Phase Equilib. 1996. V. 116. P. 326. https://doi.org/10.1016/0378-3812(95)02903-6
  34. Berendsen H.J.C., van der Spoel D., van Drunen R. // Computer Phys. Commun. 1995. V. 91. № 1–3. P. 43. https://doi.org/10.1016/0010-4655(95)00042-E
  35. Abascal J.L.F., Sanz E., Fernandez R.G. et al. // J. Chem. Phys. 2005. V. 122. P. 234511. https://doi.org/10.1063/1.1931662
  36. Goodbody S.J., Watanabe K., MacGowan D. et al. // J. Chem. Soc., Faraday Trans. 1991. V. 87. № 13. P. 1951. https://doi.org/10.1039/FT9918701951
  37. Ferdows M., Ota M. // Chem. Eng. Technol.: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology. 2005. V. 28. № 2. P. 168. https://doi.org/10.1002/ceat.200407056

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (100KB)
3.

Download (92KB)
4.

Download (74KB)
5.

Download (75KB)

Copyright (c) 2023 Ю.Ю. Божко, Р.К. Жданов, К.В. Гец, О.С. Субботин, В.Р. Белослудов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies