High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-temperature composite materials comprising single-walled carbon nanotubes embedded in a polybenzimidazole (PBI) polymer matrix with a weight percentage of nanotubes from 1 to 5% were prepared and characterized. Film composite samples were prepared by flow-coating from dispersions of nanotubes in 2% PBI solution in N-methyl-2-pyrrolidone. The temperature dependences of electrical resistance of the composites were studied in the range from room temperature to 300°C in a high vacuum at a pressure less than 1 × 10–3 Pa. The first heating cycle to 300°C gave rise to an increase in room-temperature electrical resistance of the samples due to the desorption of oxygen from the nanotubes. For the composites containing 5 and 1% nanotubes, the change was about 1.4 and 500 times, respectively. This increase was reversible: when the samples were transferred to the ambient air, the electrical resistance relaxed to its initial value. The thermal stability of the composites was proved by the repeatability of the subsequent heating cycles and by thermogravimetric analysis.

About the authors

V. A. Kuznetsov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

A. A. Fedorov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

B. Ch. Kholkhoev

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

E. N. Tkachev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia

A. S. Buinov

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

V. F. Burdukovskii

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

References

  1. Wang Y., Wang A.X., Wang Y. et al. // Sensors Actuators A Phys. 2013. V. 199. P. 265. https://doi.org/10.1016/j.sna.2013.05.023
  2. Zhou L.S., Jung S.Y., Brandon E. et al. // IEEE T. Electron Dev. 2006. V. 53. № 2. P. 380. https://doi.org/10.1109/TED.2005.861727
  3. Hu N., Karube Y., Arai M. et al. // Carbon. 2010. V. 48. № 3. P. 680. https://doi.org/10.1016/j.carbon.2009.10.012
  4. Yu X.W., Cheng H.H., Zhang M. et al. // Nat. Rev. Mater. 2017. V. 2. № 9. P. 13. https://doi.org/10.1038/natrevmats.2017.46
  5. Li Q.Y., Luo S.J., Wang Y. et al. // Sens. Actuators, A. 2019. V. 300. P. 7. https://doi.org/10.1016/j.sna.2019.111664
  6. Zhan P.F., Zhai W., Wang N. et al. // Mater. Lett. 2019. V. 236. P. 60. https://doi.org/10.1016/j.matlet.2018.10.068
  7. Kim H., Abdala A.A., Macosko C.W. // Macromolecules. 2010. V. 43. № 16. P. 6515. https://doi.org/10.1021/ma100572e
  8. Kuilla T., Bhadra S., Yao D. et al. // Prog. Polym. Sci. 2010. V. 35. № 11. P. 1350. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  9. Verdejo R., Bernal M.M., Romasanta L.J. et al. // J. Mater. Chem. 2011. V. 21. P. 3301. https://doi.org/10.1039/c0jm02708a
  10. Huang X., Qi X., Boey F. et al. // Chem. Soc. Rev. 2012. V. 41. № 2. P. 666. https://doi.org/10.1039/c1cs15078b
  11. He L., Tjong S.C. // Mater. Sci. Eng., R. 2016. V. 109. P. 1. https://doi.org/10.1016/j.mser.2016.08.002
  12. Idumah C.I., Hassan A. // Rev. Chem. Eng. 2016. V. 32. № 2. P. 223. https://doi.org/10.1515/revce-2015-0038
  13. Nguyen D.N., Yoon H. // Polymers. 2016. V. 8. № 4. P. 118. https://doi.org/10.3390/polym8040118
  14. Saleem H., Edathil A., Ncube T. et al. // Macromol. Mater. Eng. 2016. V. 301. № 3. P. 231. https://doi.org/10.1002/mame.201500335
  15. Yin F.X., Yang J.Z., Peng H.F. et al. // J. Mater. Chem. C. 2018. V. 6. № 25. P. 6840. https://doi.org/10.1039/c8tc00839f
  16. Mainwaring D., Murgaraj P., Huertas N.E.M. // Polymeric strain sensor, WO. 2006/125253 A1, 2006. https://patentimages.storage.googleapis.com/73/6f/b-b/41950bc07f72ed/WO2006125253A1.pdf
  17. Vogel H., Marvel C.S. // J. Polym. Sci., A: Polym. Chem. 1996. V. 34. № 7. P. 1125. https://doi.org/10.1002/pola.1996.826
  18. Chung T.-S. // J. Macromol. Sci., Part C. 1997. V. 37. № 2. P. 277. https://doi.org/10.1080/15321799708018367
  19. DeMeuse M.T. ed. by // High Temperature Polymer Blends. Woodhead Publishing, 2014. 232 p.
  20. Okamoto M., Fujigaya T., Nakashima N. // Adv. Funct. Mater. 2008. V. 18. № 12. P. 1776. https://doi.org/10.1002/adfm.200701257
  21. Okamoto M., Fujigaya T., Nakashima N. // Small. 2009. V. 5. № 6. P. 735. https://doi.org/10.1002/smll.200801742
  22. Ueda M., Sato M., Mochizuki A. // Macromolecules. 1985. V. 18. № 12. P. 2723. https://doi.org/10.1021/ma00154a060
  23. Leykin A.Y., Fomenkov A.I., Galpern E.G. et al. // Polymer. 2010. V. 51. № 18. P. 4053. https://doi.org/10.1016/j.polymer.2010.06.053
  24. Eaton P.E., Carlson G.R., Lee J.T. // J. Org. Chem. 1973. V. 38. № 23. P. 4071. https://doi.org/10.1021/jo00987a028
  25. Kholkhoev B.C., Gorenskaya E.N., Bal’zhinov S.A. et al. // Russ. J. Appl. Chem. 2016. V. 89. № 5. P. 780. https://doi.org/10.1134/s1070427216050153
  26. Kuznetsov V.A., Lavrov A.N., Kholkhoev B.C. et al. // J. Contemp. Phys. 2020. V. 55. № 1. P. 57. https://doi.org/10.3103/s1068337220010089
  27. Brooks N.W., Duckett R.A., Rose J. et al. // Polymer. 1993. V. 34. № 19. P. 4038. https://doi.org/10.1016/0032-3861(93)90664-V
  28. Eletskii A.V., Knizhnik A.A., Potapkin B.V. et al. // Physics-Uspekhi. 2015. V. 58. № 3. P. 209. https://doi.org/10.3367/UFNe.0185.201503a.0225
  29. Kaiser A.B., Skákalová V. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3786. https://doi.org/10.1039/C0CS00103A
  30. Dresselhaus M.S., Eklund P.C. // Adv. Phys. 2000. V. 49. № 6. P. 705. https://doi.org/10.1080/000187300413184
  31. Collins P.G., Bradley K., Ishigami M. et al. // Science. 2000. V. 287. № 5459. P. 1801. https://doi.org/10.1126/science.287.5459.1801
  32. D’yachkov P.N. // Russ. J. Inorg. Chem. 2011. V. 56. № 14. P. 2160. https://doi.org/10.1134/S003602361114002633
  33. Bradley K., Jhi S.-H., Collins P.G. et al. // Phys. Rev. Lett. 2000. V. 85. № 20. P. 4361. https://doi.org/10.1103/PhysRevLett.85.4361

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (61KB)
3.

Download (84KB)
4.

Download (191KB)

Copyright (c) 2023 В.А. Кузнецов, А.А. Федоров, Б.Ч. Холхоев, Е.Н. Ткачев, А.С. Буинов, В.Ф. Бурдуковский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».