High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

High-temperature composite materials comprising single-walled carbon nanotubes embedded in a polybenzimidazole (PBI) polymer matrix with a weight percentage of nanotubes from 1 to 5% were prepared and characterized. Film composite samples were prepared by flow-coating from dispersions of nanotubes in 2% PBI solution in N-methyl-2-pyrrolidone. The temperature dependences of electrical resistance of the composites were studied in the range from room temperature to 300°C in a high vacuum at a pressure less than 1 × 10–3 Pa. The first heating cycle to 300°C gave rise to an increase in room-temperature electrical resistance of the samples due to the desorption of oxygen from the nanotubes. For the composites containing 5 and 1% nanotubes, the change was about 1.4 and 500 times, respectively. This increase was reversible: when the samples were transferred to the ambient air, the electrical resistance relaxed to its initial value. The thermal stability of the composites was proved by the repeatability of the subsequent heating cycles and by thermogravimetric analysis.

Sobre autores

V. Kuznetsov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

A. Fedorov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

B. Kholkhoev

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

E. Tkachev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
630090, Novosibirsk, Russia

A. Buinov

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

V. Burdukovskii

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vitalii.a.kuznetsov@gmail.com
670047, Ulan-Ude, Russia

Bibliografia

  1. Wang Y., Wang A.X., Wang Y. et al. // Sensors Actuators A Phys. 2013. V. 199. P. 265. https://doi.org/10.1016/j.sna.2013.05.023
  2. Zhou L.S., Jung S.Y., Brandon E. et al. // IEEE T. Electron Dev. 2006. V. 53. № 2. P. 380. https://doi.org/10.1109/TED.2005.861727
  3. Hu N., Karube Y., Arai M. et al. // Carbon. 2010. V. 48. № 3. P. 680. https://doi.org/10.1016/j.carbon.2009.10.012
  4. Yu X.W., Cheng H.H., Zhang M. et al. // Nat. Rev. Mater. 2017. V. 2. № 9. P. 13. https://doi.org/10.1038/natrevmats.2017.46
  5. Li Q.Y., Luo S.J., Wang Y. et al. // Sens. Actuators, A. 2019. V. 300. P. 7. https://doi.org/10.1016/j.sna.2019.111664
  6. Zhan P.F., Zhai W., Wang N. et al. // Mater. Lett. 2019. V. 236. P. 60. https://doi.org/10.1016/j.matlet.2018.10.068
  7. Kim H., Abdala A.A., Macosko C.W. // Macromolecules. 2010. V. 43. № 16. P. 6515. https://doi.org/10.1021/ma100572e
  8. Kuilla T., Bhadra S., Yao D. et al. // Prog. Polym. Sci. 2010. V. 35. № 11. P. 1350. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  9. Verdejo R., Bernal M.M., Romasanta L.J. et al. // J. Mater. Chem. 2011. V. 21. P. 3301. https://doi.org/10.1039/c0jm02708a
  10. Huang X., Qi X., Boey F. et al. // Chem. Soc. Rev. 2012. V. 41. № 2. P. 666. https://doi.org/10.1039/c1cs15078b
  11. He L., Tjong S.C. // Mater. Sci. Eng., R. 2016. V. 109. P. 1. https://doi.org/10.1016/j.mser.2016.08.002
  12. Idumah C.I., Hassan A. // Rev. Chem. Eng. 2016. V. 32. № 2. P. 223. https://doi.org/10.1515/revce-2015-0038
  13. Nguyen D.N., Yoon H. // Polymers. 2016. V. 8. № 4. P. 118. https://doi.org/10.3390/polym8040118
  14. Saleem H., Edathil A., Ncube T. et al. // Macromol. Mater. Eng. 2016. V. 301. № 3. P. 231. https://doi.org/10.1002/mame.201500335
  15. Yin F.X., Yang J.Z., Peng H.F. et al. // J. Mater. Chem. C. 2018. V. 6. № 25. P. 6840. https://doi.org/10.1039/c8tc00839f
  16. Mainwaring D., Murgaraj P., Huertas N.E.M. // Polymeric strain sensor, WO. 2006/125253 A1, 2006. https://patentimages.storage.googleapis.com/73/6f/b-b/41950bc07f72ed/WO2006125253A1.pdf
  17. Vogel H., Marvel C.S. // J. Polym. Sci., A: Polym. Chem. 1996. V. 34. № 7. P. 1125. https://doi.org/10.1002/pola.1996.826
  18. Chung T.-S. // J. Macromol. Sci., Part C. 1997. V. 37. № 2. P. 277. https://doi.org/10.1080/15321799708018367
  19. DeMeuse M.T. ed. by // High Temperature Polymer Blends. Woodhead Publishing, 2014. 232 p.
  20. Okamoto M., Fujigaya T., Nakashima N. // Adv. Funct. Mater. 2008. V. 18. № 12. P. 1776. https://doi.org/10.1002/adfm.200701257
  21. Okamoto M., Fujigaya T., Nakashima N. // Small. 2009. V. 5. № 6. P. 735. https://doi.org/10.1002/smll.200801742
  22. Ueda M., Sato M., Mochizuki A. // Macromolecules. 1985. V. 18. № 12. P. 2723. https://doi.org/10.1021/ma00154a060
  23. Leykin A.Y., Fomenkov A.I., Galpern E.G. et al. // Polymer. 2010. V. 51. № 18. P. 4053. https://doi.org/10.1016/j.polymer.2010.06.053
  24. Eaton P.E., Carlson G.R., Lee J.T. // J. Org. Chem. 1973. V. 38. № 23. P. 4071. https://doi.org/10.1021/jo00987a028
  25. Kholkhoev B.C., Gorenskaya E.N., Bal’zhinov S.A. et al. // Russ. J. Appl. Chem. 2016. V. 89. № 5. P. 780. https://doi.org/10.1134/s1070427216050153
  26. Kuznetsov V.A., Lavrov A.N., Kholkhoev B.C. et al. // J. Contemp. Phys. 2020. V. 55. № 1. P. 57. https://doi.org/10.3103/s1068337220010089
  27. Brooks N.W., Duckett R.A., Rose J. et al. // Polymer. 1993. V. 34. № 19. P. 4038. https://doi.org/10.1016/0032-3861(93)90664-V
  28. Eletskii A.V., Knizhnik A.A., Potapkin B.V. et al. // Physics-Uspekhi. 2015. V. 58. № 3. P. 209. https://doi.org/10.3367/UFNe.0185.201503a.0225
  29. Kaiser A.B., Skákalová V. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3786. https://doi.org/10.1039/C0CS00103A
  30. Dresselhaus M.S., Eklund P.C. // Adv. Phys. 2000. V. 49. № 6. P. 705. https://doi.org/10.1080/000187300413184
  31. Collins P.G., Bradley K., Ishigami M. et al. // Science. 2000. V. 287. № 5459. P. 1801. https://doi.org/10.1126/science.287.5459.1801
  32. D’yachkov P.N. // Russ. J. Inorg. Chem. 2011. V. 56. № 14. P. 2160. https://doi.org/10.1134/S003602361114002633
  33. Bradley K., Jhi S.-H., Collins P.G. et al. // Phys. Rev. Lett. 2000. V. 85. № 20. P. 4361. https://doi.org/10.1103/PhysRevLett.85.4361

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (61KB)
3.

Baixar (84KB)
4.

Baixar (191KB)

Declaração de direitos autorais © В.А. Кузнецов, А.А. Федоров, Б.Ч. Холхоев, Е.Н. Ткачев, А.С. Буинов, В.Ф. Бурдуковский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies