Synthesis and Structure of Trisubstituted closo-Decaborane [B10H7(1-IPh)(6(7),10-NHOCCH3)]: Specifics of Interaction between the [2-B10H9NH=C(OH)CH3]– Ion and PhI(OAc)2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The preparation of trisubstituted closo-decaboranes by reacting 1,2-boroxazoles with PhI(OAc)2 was studied. The process could be implemented in a one-pot variant proceeding from borylated iminol. The reaction products were characterized by 1H, 11B, and 13C NMR spectroscopy. The XRD structure of the compound [B10H7(1-IPh)(6,10-NHOCCH3)] was determined.

About the authors

V. V. Voinova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
119991, Moscow, Russia

N. A. Selivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
119991, Moscow, Russia

A. Yu. Bykov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
119991, Moscow, Russia

A. S. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: avdeeva.varvara@mail.ru
119991, Moscow, Russia

A. P. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: golalekseival@mail.ru
119991, Moscow, Russia

K. Yu. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
119991, Moscow, Russia

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia

References

  1. Couto M., Alamón C., García M. et al. // Cells. 2020. V. 9. № 6. P. 1408. https://doi.org/10.3390/cells9061408
  2. Golub I.E., Filippov O.A., Kulikova V.A. et al. // Molecules. 2020. V. 25. № 12. P. 2920. https://doi.org/10.3390/molecules25122920
  3. Knapp C. Weakly Coordinating Anions: Halogenated Borates and Dodecaborates // Comprehensive Inorganic Chemistry II. Elsevier, 2013. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
  4. Fisher S.P., Tomich A.W., Lovera S.O. et al. // Chem. Rev. 2019. V. 119. № 14. P. 8262. https://doi.org/10.1021/acs.chemrev.8b00551
  5. Shen Y., Kong X., Yang F. et al. // Inorg. Chem. 2022. V. 61. № 42. P. 16707. https://doi.org/10.1021/acs.inorgchem.2c02467
  6. Wang Z., Chen B., Zhang H. et al. // Mater. Chem. Front. 2022. V. 6. № 6. P. 783. https://doi.org/10.1039/D1QM01567B
  7. Tanaka K., Gon M., Ito S. et al. // Coord. Chem. Rev. 2022. V. 472. P. 214779. https://doi.org/10.1016/j.ccr.2022.214779
  8. Mori T. // J. Solid State Chem. 2019. V. 275. P. 70. https://doi.org/10.1016/j.jssc.2019.03.046
  9. Ali F., S Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
  10. Dymova M.A., Taskaev S.Y., Richter V.A. et al. // Cancer Commun. 2020. V. 40. № 9. P. 406. https://doi.org/10.1002/cac2.12089
  11. Shakerzadeh E., Tahmasebi E., van Duong L. et al. // Boron Clusters in Biomedical Applications: A Theoretical Viewpoint // Characteristics and Applications of Boron. IntechOpen, 2022. https://doi.org/10.5772/intechopen.106215
  12. Авдеева В.В., Полякова И.В., Гоева Л.В. и др. // Журн. неорган. химии. 2014. Т. 59. С. 1491.
  13. Kapuściński S., Hietsoi O., Pietrzak A. et al. // Chem. Commun. 2022. V. 58. № 6. P. 851. https://doi.org/10.1039/D1CC06485A
  14. Isono A., Tsuji M., Sanada Y. et al. // ChemMedChem. 2019. V. 14. № 8. P. 823. https://doi.org/10.1002/cmdc.201800793
  15. Shi Y., Li J., Zhang Z. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 50. P. 43387. https://doi.org/10.1021/acsami.8b14682
  16. Shi Y., Fu Q., Li J. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 50. P. 55564. https://doi.org/10.1021/acsami.0c15251
  17. Rykowski S., Gurda-Woźna D., Orlicka-Płocka M. et al. // Int. J. Mol. Sci. 2021. V. 22. № 5. P. 1. https://doi.org/10.3390/ijms22052772
  18. Hamilton E.J.M., Leung H.T., Kultyshev R.G. et al. // Inorg. Chem. 2012. V. 51. № 4. P. 2374. https://doi.org/10.1021/ic2023709
  19. Laila Z., Abi-Ghaida F., al Anwar S. et al. // Main Group Chem. 2015. V. 14. № 4. P. 301. https://doi.org/10.3233/MGC-150173
  20. Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
  21. Неумолотов Н.К., Селиванов Н.А., Быков А.Ю. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1417.
  22. Rzeszotarska E., Novozhilova I., Kaszyński P. // Inorg. Chem. 2017. V. 56. № 22. P. 14351. https://doi.org/10.1021/acs.inorgchem.7b02477
  23. Kapuscinski S., Abdulmojeed M.B., Schafer T.E. et al. // Inorg. Chem. Front. 2021. V. 8. № 4. P. 1066. https://doi.org/10.1039/d0qi01353f
  24. Voinova V.V., Selivanov N.A., Plyushchenko I.V. et al. // Molecules. 2021. V. 26. № 1. P. 248. https://doi.org/10.3390/molecules26010248
  25. Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
  26. Нелюбин А.В., Селиванов Н.А., Быков А.Ю. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1588.
  27. Prikaznov A.V., Shmal’ko A.V., Sivaev I.B. et al. // Polyhedron. 2011. V. 30. № 9. P. 1494. https://doi.org/10.1016/j.poly.2011.02.055
  28. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 11. № 8. P. 977. https://doi.org/10.1039/b715363e
  29. Yorov K.E., Zhdanov A.P., Kamilov R.Kh. et al. // ACS Appl. Nano Mater. 2022. V. 5. № 8. P. 11529. https://doi.org/10.1021/acsanm.2c02550
  30. Stepanova M., Dobrodumov A., Averianov I. et al. // Polymers (Basel). 2022. V. 14. № 18. P. 3864. https://doi.org/10.3390/polym14183864
  31. Нелюбин А.В., Соколов М.С., Селиванов Н.А. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1562.
  32. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
  33. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  34. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  35. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  37. Allen F.H., Kennard O., Watson D.G. et al. // J. Chem. Soc., Perkin Trans. II 1987. P. S1. https://doi.org/10.1039/p298700000s1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (66KB)
3.

Download (329KB)
4.

Download (726KB)
5.

Download (639KB)

Copyright (c) 2023 В.В. Воинова, Н.А. Селиванов, А.Ю. Быков, А.С. Кубасов, А.П. Жданов, К.Ю. Жижин, Н.Т. Кузнецов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».