Ce0.9(Mg,Ni)0.1O2: композит или твердый раствор?

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом сжигания геля c последующей гидротермальной обработкой получены образцы состава Ce0.9(Mg1–xNix)0.1O2 (0 ≤ x ≤ 1, шаг x = 0.1). Рентгенофазовый анализ показал, что после сгорания геля и отжига при 1100°С образуется композит CeO2 (структура флюорита)/твердый раствор Mg1–xNixO (структура галита), а дополнительная гидротермальная обработка с последующим отжигом способствует образованию ограниченного твердого раствора Ce0.9(Mg1–xNix)0.1O2. Согласно результатам ИК-спектроскопии, композит CeO2–Mg1–xNixO не адсорбирует CO2 даже в присутствии паров воды, что также подтверждается спектрами диффузного отражения в УФ-видимой области. Напротив, твердый раствор Ce0.9(Mg1–xNix)0.1O2 поглощает CO2, о чем свидетельствуют результаты ИК-спектроскопии и термогравиметрического анализа.

Об авторах

М. Н. Смирнова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. Д. Нипан

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: gbuzanov@yandex.ru
Россия, 119071, Москва

М. А. Копьева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. Е. Никифорова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. А. Бузанов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Е. И. Кожухова

НИЦ “Курчатовский институт” – ИРЕА

Email: smirnova_macha1989@mail.ru
Россия, 107076, Москва, ул. Богородский Вал, 3

И. В. Козерожец

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. Д. Япрынцев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. А. Архипенко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

М. С. Доронина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2020. P. 279. https://doi.org/10.1016/b978-0-12-815661-2.00008-6
  2. Slostowski C., Marre S., Dagault P. et al. // J. CO2 Util. 2017. V. 20. P. 52. https://doi.org/10.1016/j.jcou.2017.03.023
  3. Kanahara K., Matsushima Y. // J. Electrochem. Soc. 2019. V. 166. № 12. B978. https://doi.org/10.1149/2.0691912jes
  4. Izu N., Matsubara I., Itoh T. et al. // J. As. Ceram. Soc. 2016. V. 4. № 2. P. 205. https://doi.org/10.1016/j.jascer.2016.04.001
  5. Li M., Tumuluri U., Wu Z., Dai S. // Chem. Sus. Chem. 2015. V. 8. 3651. https://doi.org/10.1002/cssc.201500899
  6. Jin S., Bang G., Liu L. et al. // Microporous and Mesoporous Mater. 2019. V. 288. P. 109587. https://doi.org/10.1016/j.micromeso.2019.109587
  7. Martra G., Marchese L., Arena F. et al. // Top. Catal. 1994. V. 1. № 1–2. P. 63. https://doi.org/10.1007/BF01379576
  8. Jang W.-J., Kim H.-M., Shiem J.-O. et al. // Green Chem. 2018. V. 20. № 7. P. 1621. https://doi.org/10.1039/C7GC03605A
  9. Nguyen T.H., Kim H.B., Park E.D. // Catalysts. 2022. V. 12. № 2. P. 212. https://doi.org/10.3390/catal12020212
  10. Preda M., Dinescu R. // Rev. Roum. Chim. 1976. V. 21. № 7. P. 1023.
  11. Longo V., Meriani S., Ricciardiello F. et al. // Am. Ceram. Soc. 1981. V. 64. № 2. P. 38. https://doi.org/10.1111/j.1151-2916.1981.tb09574.x
  12. Ivanova A.S., Moroz B.L., Moroz E.M. et al. // J. Solid. State Chem. 2005. V. 178. № 11. P. 3265. https://doi.org/10.1016/j.jssc.2005.08.001
  13. Manríquez-Ramirez M.E., Elizalde I. et al. // React. Kinet. Mech. Catal. 2020. V. 131. № 2. P. 769. https://doi.org/10.1007/s11144-020-01868-8
  14. Shafighi S., Mohammad Shafiee R.M., Ghashang M. et al. // J. Sulfur Chem. 2018. V. 39. № 4. P. 402. https://doi.org/10.1080/17415993.2018.1436710
  15. Saito M., Itoh M., IwamotoJ. et al. // Catal. Lett. 2006. V. 106. № 3–4. P. 107. https://doi.org/10.1007/s10562-005-9615-3
  16. Abimanyu H., Ahn B.S., Kim C.S. et al. // Ind. Eng. Chem. Res. 2007. V. 46. № 24. P. 7936. https://doi.org/10.1021/ie070528d
  17. Chen M., Fang W.-M., Zheng X.-M. // Acta Chim. Sinica. 2004. V. 62. № 20. P. 2051.
  18. Chen M., Zheng H., Shi C. et al. // J. Mol. Catal. A. 2005. V. 237. № 1–2. P. 132. https://doi.org/10.1016/j.molcata.2005.04.038
  19. Hrovat M., Hole J., Bernic S. et al. // Mater. Res. Bull. 1998. V. 33. № 8. P. 1175. https://doi.org/10.1016/S0025-5408(98)00103-2
  20. Wang C.-C., Li J.-H., Sun Y.-F. et al. // Acta Phys.-Chim. Sin. 2011. V. 27. № 10. P. 2421. http://www.whxb.pku.edu.cn/EN/Y2011/V27/I10/2421
  21. Pound B.G. // Solid State Ionics. 1992. V. 52. № 1–3. P. 183. https://doi.org/10.1016/0167-2738(92)90104-W
  22. Ranlov J., Poulsen F.W., Mogensen M. // Solid State Ionics. 1993. V. 61. № 4. P. 277. https://doi.org/10.1016/0167-2738(93)90392-G
  23. Pound B.G. // Solid State Ionics. 1993. V. 61. № 4. P. 281. https://doi.org/10.1016/0167-2738(93)90393-H
  24. Lu B., Kawamoto K. // Mater. Res. Bull. 2014. V. 53. P. 70. https://doi.org/10.1016/j.materresbull.2014.01.043
  25. Hilaire S., Luo L., Rechberger F. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 5. P. 733. https://doi.org/10.1002/zaac.201300567
  26. Huang Z., Zhao Z., Qi H. et al. // J. Energy Chem. 2020. V. 40. P. 46. https://doi.org/10.1016/j.jechem.2019.02.007
  27. Keneko H., Tamaura Y. // J. Phys. Chem. Solids. 2009. V. 70. № 6. P. 1008. https://doi.org/10.1016/j.jpcs.2009.05.015
  28. Thurber A., Reddy K.M., Shutthanandan V. et al. // Phys. Rev. B. 2007. V. 76. P. 165206. https://doi.org/10.1103/PhysRevB.76.165206
  29. Zinkevich M., Geupel S., Aldinger F. // J. Alloys. Compd. 2005. V. 293. P. 154. https://doi.org/10.1016/j.jallcom.2004.09.069
  30. Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  31. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 978. https://doi.org/10.1134/S0036023622070221
  32. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1823. https://doi.org/10.1134/S0036023622600824
  33. Arkhipenko A.A., Koshel E.S., Baranovskaya V.B. // Industrial laboratory. Diagnostics of materials. 2021. V. 87. № 11. P. 19. https://doi.org/10.26896/1028-6861-2021-87-11-19-25
  34. Miri A., Sarani M. // Ceram. Int. 2018. V. 44. № 11. P. 12642. https://doi.org/10.1016/j.ceramint.2018.04.063
  35. Binet C., Daturi M., Lavalley J.-K. // Catal. Today. 1999. V. 50. № 2. P. 207. https://doi.org/10.1016/S0920-5861(98)00504-5
  36. Ding Y.D., Song G., Liao Q. et al. // Energy. 2016. V.112. P. 101. https://doi.org/10.1016/j.energy.2016.06.064
  37. Sandhya K.L., Prabhakar R.P., Lakshmipathy R.M. et al. // J. Alloys Compd. 2008. V. 461. № 1–2. P. 509. https://doi.org/10.1016/j.jallcom.2007.07.055
  38. Brito P.C.A., Santos D.A.A., Duque J.G.S. et al. // Phys. B. Condens. Mater. 2010. V. 405. № 7. P. 1821. https://doi.org/10.1016/j.physb.2010.01.054
  39. Zhang G., Li L., Li G. et al. // Solid State Sci. 2009. V. 11. P. 671. https://doi.org/10.1016/j.solidstatesciences.2008.10.01
  40. Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K. // J. Inorg. Chem. 2007. V. 52. P. 1184. https://doi.org/10.1134/S0036023607080049
  41. Köck E.-M., Bernard J., Podewit M. et al. // Chem. Eur. J. 2020. V. 26 P. 285. https://doi.org/10.1002/chem.201904142
  42. Kolle J.M., Fayaz M., Sayari A. // Chem. Rev. 2021. V. 121. № 13. P. 7280. https://doi.org/10.1021/acs.chemrev.0c00762
  43. Baltrusaitis J., Schuttlefield J., Zeitler E. et al. // Chem. Eng. J. 2011. V. 170. P. 471. https://doi.org/10.1016/j.cej.2010.12.041
  44. Knoblauch N., Simon H., Schmücker M. // Solid State Ionics. 2017. V. 301. P. 43. https://doi.org/10.1016/j.ssi.2017.01.003

Дополнительные файлы


© М.Н. Смирнова, Г.Д. Нипан, М.А. Копьева, Г.Е. Никифорова, Г.А. Бузанов, Е.И. Кожухова, И.В. Козерожец, А.Д. Япрынцев, А.А. Архипенко, М.С. Доронина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».