Ce0.9(Mg,Ni)0.1O2: композит или твердый раствор?

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом сжигания геля c последующей гидротермальной обработкой получены образцы состава Ce0.9(Mg1–xNix)0.1O2 (0 ≤ x ≤ 1, шаг x = 0.1). Рентгенофазовый анализ показал, что после сгорания геля и отжига при 1100°С образуется композит CeO2 (структура флюорита)/твердый раствор Mg1–xNixO (структура галита), а дополнительная гидротермальная обработка с последующим отжигом способствует образованию ограниченного твердого раствора Ce0.9(Mg1–xNix)0.1O2. Согласно результатам ИК-спектроскопии, композит CeO2–Mg1–xNixO не адсорбирует CO2 даже в присутствии паров воды, что также подтверждается спектрами диффузного отражения в УФ-видимой области. Напротив, твердый раствор Ce0.9(Mg1–xNix)0.1O2 поглощает CO2, о чем свидетельствуют результаты ИК-спектроскопии и термогравиметрического анализа.

Об авторах

М. Н. Смирнова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. Д. Нипан

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

М. А. Копьева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. Е. Никифорова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. А. Бузанов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Е. И. Кожухова

НИЦ “Курчатовский институт” – ИРЕА

Email: smirnova_macha1989@mail.ru
Россия, 107076, Москва, ул. Богородский Вал, 3

И. В. Козерожец

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. Д. Япрынцев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. А. Архипенко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

М. С. Доронина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: smirnova_macha1989@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2020. P. 279. https://doi.org/10.1016/b978-0-12-815661-2.00008-6
  2. Slostowski C., Marre S., Dagault P. et al. // J. CO2 Util. 2017. V. 20. P. 52. https://doi.org/10.1016/j.jcou.2017.03.023
  3. Kanahara K., Matsushima Y. // J. Electrochem. Soc. 2019. V. 166. № 12. B978. https://doi.org/10.1149/2.0691912jes
  4. Izu N., Matsubara I., Itoh T. et al. // J. As. Ceram. Soc. 2016. V. 4. № 2. P. 205. https://doi.org/10.1016/j.jascer.2016.04.001
  5. Li M., Tumuluri U., Wu Z., Dai S. // Chem. Sus. Chem. 2015. V. 8. 3651. https://doi.org/10.1002/cssc.201500899
  6. Jin S., Bang G., Liu L. et al. // Microporous and Mesoporous Mater. 2019. V. 288. P. 109587. https://doi.org/10.1016/j.micromeso.2019.109587
  7. Martra G., Marchese L., Arena F. et al. // Top. Catal. 1994. V. 1. № 1–2. P. 63. https://doi.org/10.1007/BF01379576
  8. Jang W.-J., Kim H.-M., Shiem J.-O. et al. // Green Chem. 2018. V. 20. № 7. P. 1621. https://doi.org/10.1039/C7GC03605A
  9. Nguyen T.H., Kim H.B., Park E.D. // Catalysts. 2022. V. 12. № 2. P. 212. https://doi.org/10.3390/catal12020212
  10. Preda M., Dinescu R. // Rev. Roum. Chim. 1976. V. 21. № 7. P. 1023.
  11. Longo V., Meriani S., Ricciardiello F. et al. // Am. Ceram. Soc. 1981. V. 64. № 2. P. 38. https://doi.org/10.1111/j.1151-2916.1981.tb09574.x
  12. Ivanova A.S., Moroz B.L., Moroz E.M. et al. // J. Solid. State Chem. 2005. V. 178. № 11. P. 3265. https://doi.org/10.1016/j.jssc.2005.08.001
  13. Manríquez-Ramirez M.E., Elizalde I. et al. // React. Kinet. Mech. Catal. 2020. V. 131. № 2. P. 769. https://doi.org/10.1007/s11144-020-01868-8
  14. Shafighi S., Mohammad Shafiee R.M., Ghashang M. et al. // J. Sulfur Chem. 2018. V. 39. № 4. P. 402. https://doi.org/10.1080/17415993.2018.1436710
  15. Saito M., Itoh M., IwamotoJ. et al. // Catal. Lett. 2006. V. 106. № 3–4. P. 107. https://doi.org/10.1007/s10562-005-9615-3
  16. Abimanyu H., Ahn B.S., Kim C.S. et al. // Ind. Eng. Chem. Res. 2007. V. 46. № 24. P. 7936. https://doi.org/10.1021/ie070528d
  17. Chen M., Fang W.-M., Zheng X.-M. // Acta Chim. Sinica. 2004. V. 62. № 20. P. 2051.
  18. Chen M., Zheng H., Shi C. et al. // J. Mol. Catal. A. 2005. V. 237. № 1–2. P. 132. https://doi.org/10.1016/j.molcata.2005.04.038
  19. Hrovat M., Hole J., Bernic S. et al. // Mater. Res. Bull. 1998. V. 33. № 8. P. 1175. https://doi.org/10.1016/S0025-5408(98)00103-2
  20. Wang C.-C., Li J.-H., Sun Y.-F. et al. // Acta Phys.-Chim. Sin. 2011. V. 27. № 10. P. 2421. http://www.whxb.pku.edu.cn/EN/Y2011/V27/I10/2421
  21. Pound B.G. // Solid State Ionics. 1992. V. 52. № 1–3. P. 183. https://doi.org/10.1016/0167-2738(92)90104-W
  22. Ranlov J., Poulsen F.W., Mogensen M. // Solid State Ionics. 1993. V. 61. № 4. P. 277. https://doi.org/10.1016/0167-2738(93)90392-G
  23. Pound B.G. // Solid State Ionics. 1993. V. 61. № 4. P. 281. https://doi.org/10.1016/0167-2738(93)90393-H
  24. Lu B., Kawamoto K. // Mater. Res. Bull. 2014. V. 53. P. 70. https://doi.org/10.1016/j.materresbull.2014.01.043
  25. Hilaire S., Luo L., Rechberger F. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 5. P. 733. https://doi.org/10.1002/zaac.201300567
  26. Huang Z., Zhao Z., Qi H. et al. // J. Energy Chem. 2020. V. 40. P. 46. https://doi.org/10.1016/j.jechem.2019.02.007
  27. Keneko H., Tamaura Y. // J. Phys. Chem. Solids. 2009. V. 70. № 6. P. 1008. https://doi.org/10.1016/j.jpcs.2009.05.015
  28. Thurber A., Reddy K.M., Shutthanandan V. et al. // Phys. Rev. B. 2007. V. 76. P. 165206. https://doi.org/10.1103/PhysRevB.76.165206
  29. Zinkevich M., Geupel S., Aldinger F. // J. Alloys. Compd. 2005. V. 293. P. 154. https://doi.org/10.1016/j.jallcom.2004.09.069
  30. Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  31. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 978. https://doi.org/10.1134/S0036023622070221
  32. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1823. https://doi.org/10.1134/S0036023622600824
  33. Arkhipenko A.A., Koshel E.S., Baranovskaya V.B. // Industrial laboratory. Diagnostics of materials. 2021. V. 87. № 11. P. 19. https://doi.org/10.26896/1028-6861-2021-87-11-19-25
  34. Miri A., Sarani M. // Ceram. Int. 2018. V. 44. № 11. P. 12642. https://doi.org/10.1016/j.ceramint.2018.04.063
  35. Binet C., Daturi M., Lavalley J.-K. // Catal. Today. 1999. V. 50. № 2. P. 207. https://doi.org/10.1016/S0920-5861(98)00504-5
  36. Ding Y.D., Song G., Liao Q. et al. // Energy. 2016. V.112. P. 101. https://doi.org/10.1016/j.energy.2016.06.064
  37. Sandhya K.L., Prabhakar R.P., Lakshmipathy R.M. et al. // J. Alloys Compd. 2008. V. 461. № 1–2. P. 509. https://doi.org/10.1016/j.jallcom.2007.07.055
  38. Brito P.C.A., Santos D.A.A., Duque J.G.S. et al. // Phys. B. Condens. Mater. 2010. V. 405. № 7. P. 1821. https://doi.org/10.1016/j.physb.2010.01.054
  39. Zhang G., Li L., Li G. et al. // Solid State Sci. 2009. V. 11. P. 671. https://doi.org/10.1016/j.solidstatesciences.2008.10.01
  40. Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K. // J. Inorg. Chem. 2007. V. 52. P. 1184. https://doi.org/10.1134/S0036023607080049
  41. Köck E.-M., Bernard J., Podewit M. et al. // Chem. Eur. J. 2020. V. 26 P. 285. https://doi.org/10.1002/chem.201904142
  42. Kolle J.M., Fayaz M., Sayari A. // Chem. Rev. 2021. V. 121. № 13. P. 7280. https://doi.org/10.1021/acs.chemrev.0c00762
  43. Baltrusaitis J., Schuttlefield J., Zeitler E. et al. // Chem. Eng. J. 2011. V. 170. P. 471. https://doi.org/10.1016/j.cej.2010.12.041
  44. Knoblauch N., Simon H., Schmücker M. // Solid State Ionics. 2017. V. 301. P. 43. https://doi.org/10.1016/j.ssi.2017.01.003

Дополнительные файлы


© М.Н. Смирнова, Г.Д. Нипан, М.А. Копьева, Г.Е. Никифорова, Г.А. Бузанов, Е.И. Кожухова, И.В. Козерожец, А.Д. Япрынцев, А.А. Архипенко, М.С. Доронина, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах