Ce0.9(Mg,Ni)0.1O2: Composite or Solid Solution

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Samples of the composition Ce0.9(Mg1 – xNix)0.1O2 (0 ≤ x ≤ 1, step x = 0.1) have been obtained by gel combustion followed by hydrothermal treatment. X-ray powder diffraction data have showed that after gel combustion and annealing at 1100°C, composite CeO2 (fluorite structure)/solid solution Mg1 – xNixO (halite structure) is formed, and additional hydrothermal treatment followed by annealing promotes the formation of limited solid solution Ce0.9(Mg1 – xNix)0.1O2. According to the results of IR spectroscopy, the CeO2/Mg1 – xNixO composite does not adsorb CO2 even in the presence of water vapor, which is also confirmed by diffuse reflectance spectra in the UV-visible region. On the contrary, the Ce0.9(Mg1 – xNix)0.1O2 solid solution absorbs CO2, as evidenced by the results of IR spectroscopy and thermogravimetric analysis.

Авторлар туралы

M. Smirnova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

G. Nipan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gbuzanov@yandex.ru
Russian Federation, 119071, Moscow

M. Kop’eva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

E. Kozhukhova

National Research Center “Kurchatov Institute,” IREA

Email: smirnova_macha1989@mail.ru
107076, Moscow, Russia

I. Kozerozhets

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

A. Yapryntsev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

A. Arkhipenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

M. Doronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: smirnova_macha1989@mail.ru
119991, Moscow, Russia

Әдебиет тізімі

  1. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2020. P. 279. https://doi.org/10.1016/b978-0-12-815661-2.00008-6
  2. Slostowski C., Marre S., Dagault P. et al. // J. CO2 Util. 2017. V. 20. P. 52. https://doi.org/10.1016/j.jcou.2017.03.023
  3. Kanahara K., Matsushima Y. // J. Electrochem. Soc. 2019. V. 166. № 12. B978. https://doi.org/10.1149/2.0691912jes
  4. Izu N., Matsubara I., Itoh T. et al. // J. As. Ceram. Soc. 2016. V. 4. № 2. P. 205. https://doi.org/10.1016/j.jascer.2016.04.001
  5. Li M., Tumuluri U., Wu Z., Dai S. // Chem. Sus. Chem. 2015. V. 8. 3651. https://doi.org/10.1002/cssc.201500899
  6. Jin S., Bang G., Liu L. et al. // Microporous and Mesoporous Mater. 2019. V. 288. P. 109587. https://doi.org/10.1016/j.micromeso.2019.109587
  7. Martra G., Marchese L., Arena F. et al. // Top. Catal. 1994. V. 1. № 1–2. P. 63. https://doi.org/10.1007/BF01379576
  8. Jang W.-J., Kim H.-M., Shiem J.-O. et al. // Green Chem. 2018. V. 20. № 7. P. 1621. https://doi.org/10.1039/C7GC03605A
  9. Nguyen T.H., Kim H.B., Park E.D. // Catalysts. 2022. V. 12. № 2. P. 212. https://doi.org/10.3390/catal12020212
  10. Preda M., Dinescu R. // Rev. Roum. Chim. 1976. V. 21. № 7. P. 1023.
  11. Longo V., Meriani S., Ricciardiello F. et al. // Am. Ceram. Soc. 1981. V. 64. № 2. P. 38. https://doi.org/10.1111/j.1151-2916.1981.tb09574.x
  12. Ivanova A.S., Moroz B.L., Moroz E.M. et al. // J. Solid. State Chem. 2005. V. 178. № 11. P. 3265. https://doi.org/10.1016/j.jssc.2005.08.001
  13. Manríquez-Ramirez M.E., Elizalde I. et al. // React. Kinet. Mech. Catal. 2020. V. 131. № 2. P. 769. https://doi.org/10.1007/s11144-020-01868-8
  14. Shafighi S., Mohammad Shafiee R.M., Ghashang M. et al. // J. Sulfur Chem. 2018. V. 39. № 4. P. 402. https://doi.org/10.1080/17415993.2018.1436710
  15. Saito M., Itoh M., IwamotoJ. et al. // Catal. Lett. 2006. V. 106. № 3–4. P. 107. https://doi.org/10.1007/s10562-005-9615-3
  16. Abimanyu H., Ahn B.S., Kim C.S. et al. // Ind. Eng. Chem. Res. 2007. V. 46. № 24. P. 7936. https://doi.org/10.1021/ie070528d
  17. Chen M., Fang W.-M., Zheng X.-M. // Acta Chim. Sinica. 2004. V. 62. № 20. P. 2051.
  18. Chen M., Zheng H., Shi C. et al. // J. Mol. Catal. A. 2005. V. 237. № 1–2. P. 132. https://doi.org/10.1016/j.molcata.2005.04.038
  19. Hrovat M., Hole J., Bernic S. et al. // Mater. Res. Bull. 1998. V. 33. № 8. P. 1175. https://doi.org/10.1016/S0025-5408(98)00103-2
  20. Wang C.-C., Li J.-H., Sun Y.-F. et al. // Acta Phys.-Chim. Sin. 2011. V. 27. № 10. P. 2421. http://www.whxb.pku.edu.cn/EN/Y2011/V27/I10/2421
  21. Pound B.G. // Solid State Ionics. 1992. V. 52. № 1–3. P. 183. https://doi.org/10.1016/0167-2738(92)90104-W
  22. Ranlov J., Poulsen F.W., Mogensen M. // Solid State Ionics. 1993. V. 61. № 4. P. 277. https://doi.org/10.1016/0167-2738(93)90392-G
  23. Pound B.G. // Solid State Ionics. 1993. V. 61. № 4. P. 281. https://doi.org/10.1016/0167-2738(93)90393-H
  24. Lu B., Kawamoto K. // Mater. Res. Bull. 2014. V. 53. P. 70. https://doi.org/10.1016/j.materresbull.2014.01.043
  25. Hilaire S., Luo L., Rechberger F. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 5. P. 733. https://doi.org/10.1002/zaac.201300567
  26. Huang Z., Zhao Z., Qi H. et al. // J. Energy Chem. 2020. V. 40. P. 46. https://doi.org/10.1016/j.jechem.2019.02.007
  27. Keneko H., Tamaura Y. // J. Phys. Chem. Solids. 2009. V. 70. № 6. P. 1008. https://doi.org/10.1016/j.jpcs.2009.05.015
  28. Thurber A., Reddy K.M., Shutthanandan V. et al. // Phys. Rev. B. 2007. V. 76. P. 165206. https://doi.org/10.1103/PhysRevB.76.165206
  29. Zinkevich M., Geupel S., Aldinger F. // J. Alloys. Compd. 2005. V. 293. P. 154. https://doi.org/10.1016/j.jallcom.2004.09.069
  30. Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  31. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 978. https://doi.org/10.1134/S0036023622070221
  32. Smirnova M.N., Kop’ev M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1823. https://doi.org/10.1134/S0036023622600824
  33. Arkhipenko A.A., Koshel E.S., Baranovskaya V.B. // Industrial laboratory. Diagnostics of materials. 2021. V. 87. № 11. P. 19. https://doi.org/10.26896/1028-6861-2021-87-11-19-25
  34. Miri A., Sarani M. // Ceram. Int. 2018. V. 44. № 11. P. 12642. https://doi.org/10.1016/j.ceramint.2018.04.063
  35. Binet C., Daturi M., Lavalley J.-K. // Catal. Today. 1999. V. 50. № 2. P. 207. https://doi.org/10.1016/S0920-5861(98)00504-5
  36. Ding Y.D., Song G., Liao Q. et al. // Energy. 2016. V.112. P. 101. https://doi.org/10.1016/j.energy.2016.06.064
  37. Sandhya K.L., Prabhakar R.P., Lakshmipathy R.M. et al. // J. Alloys Compd. 2008. V. 461. № 1–2. P. 509. https://doi.org/10.1016/j.jallcom.2007.07.055
  38. Brito P.C.A., Santos D.A.A., Duque J.G.S. et al. // Phys. B. Condens. Mater. 2010. V. 405. № 7. P. 1821. https://doi.org/10.1016/j.physb.2010.01.054
  39. Zhang G., Li L., Li G. et al. // Solid State Sci. 2009. V. 11. P. 671. https://doi.org/10.1016/j.solidstatesciences.2008.10.01
  40. Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K. // J. Inorg. Chem. 2007. V. 52. P. 1184. https://doi.org/10.1134/S0036023607080049
  41. Köck E.-M., Bernard J., Podewit M. et al. // Chem. Eur. J. 2020. V. 26 P. 285. https://doi.org/10.1002/chem.201904142
  42. Kolle J.M., Fayaz M., Sayari A. // Chem. Rev. 2021. V. 121. № 13. P. 7280. https://doi.org/10.1021/acs.chemrev.0c00762
  43. Baltrusaitis J., Schuttlefield J., Zeitler E. et al. // Chem. Eng. J. 2011. V. 170. P. 471. https://doi.org/10.1016/j.cej.2010.12.041
  44. Knoblauch N., Simon H., Schmücker M. // Solid State Ionics. 2017. V. 301. P. 43. https://doi.org/10.1016/j.ssi.2017.01.003

© М.Н. Смирнова, Г.Д. Нипан, М.А. Копьева, Г.Е. Никифорова, Г.А. Бузанов, Е.И. Кожухова, И.В. Козерожец, А.Д. Япрынцев, А.А. Архипенко, М.С. Доронина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>