Моделирование диизопропилового эфира методом молекулярной динамики в различных межатомных потенциалах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для диизопропилового эфира методом классической молекулярной динамики с использованием трех потенциалов проводится сравнительная оценка точности определения плотности и вязкости. Также исследуется точность определения коэффициентов вязкости при использовании равновесных и неравновесного методов расчета.

Об авторах

О. В. Кашурин

Московский физико-технический институт (национальный исследовательский университет)

Email: kashurin.ov@phystech.edu
Россия, Московская область, Долгопрудный

Н. Д. Кондратюк

Московский физико-технический институт (национальный исследовательский университет); Объединенный институт высоких температур РАН; Национальный исследовательский университет “Высшая школа экономики”

Email: kashurin.ov@phystech.edu
Россия, Московская область, Долгопрудный; Россия, Москва; Россия, Москва

А. В. Ланкин

Объединенный институт высоких температур РАН; Московский физико-технический институт (национальный исследовательский университет)

Email: kashurin.ov@phystech.edu
Россия, Москва; Россия, Московская область, Долгопрудный

Г. Э. Норман

Объединенный институт высоких температур РАН; Московский физико-технический институт (национальный исследовательский университет); Национальный исследовательский университет “Высшая школа экономики”

Автор, ответственный за переписку.
Email: kashurin.ov@phystech.edu
Россия, Москва; Россия, Московская область, Долгопрудный; Россия, Москва; Moscow, Russia

Список литературы

  1. Campos Assuncao M., Cote G., Andre M. et al. // RSC Adv. 2017. № 7. P. 6922.
  2. Miran Milošević, Boelo Schuur, Andre B. De Haan // Chemical engineering transactions. 2011. V. 24. P. 733.
  3. Kristina Søborg Pedersen, Karin Michaelsen Nielsen, Jesper Fonslet et al. // Solvent Extraction and Ion Exchange. 2019. V. 37. № 5. P. 376.
  4. Piñeiro Á. // Fluid Phase Equilib. 2004. V. 216. P. 245.
  5. Kammerer K., Lichtenthaler R.N. // Thermochim. Acta. 1998. V. 310. P. 61.
  6. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. № 9. P. 2353.
  7. Mohammed Rashid Ali, Noor Asma Fazli Abdul Samad // Physics and Chemistry of Liquids. 2021. V. 59. № 4. P. 1.
  8. Gui Liu, Zhongwei Zhao, Ahmad Ghahreman // Hydrometallurgy. 2019. V. 187. P. 81.
  9. Xue-Qiang Zhang, Qi Jin, Yi-Ling Nan et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15503.
  10. Wei-Jing Chen, Chang-Xin Zhao, Bo-Quan Li et al. // Energy Environ. Mater. 2020. V. 3. P. 160.
  11. Manju Rani, Sanjeev Maken, So Jin Park // Korean J. Chem. Eng. 2019. V. 36. № 9. P. 1401.
  12. Гурина Д.Л., Антипова М.Л., Петренко В.Е. // Журн. физ. химии. 2011. Т. 85. № 5. С. 885.
  13. Антипова М.Л., Петренко В.Е. // Там же. 2013. Т. 87. № 7. С. 1196.
  14. Ланкин А.В., Норман Г.Э., Орехов М.А. // Там же. 2016. Т. 90. № 5. С. 710.
  15. Orekhov N., Kondratyuk N., Logunov M. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 1984.
  16. Gupta A.K. // Mater. Today Proc. 2021. V. 44. P. 2380.
  17. Min Zhou, Ke Cheng, Guo-Zhu Jia // J. Mol. Liq. 2017. V. 230. P. 137.
  18. Раззоков Д., Исмаилова О.Б., Маматкулов Ш.И. и др. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1339.
  19. Ewen J., Gattinoni C., Thakkar F. et al. // Materials. 2016. V. 9. № 8. P. 651.
  20. Glova A.D., Volgin I.V., Nazarychev V.M. et al. // RSC Adv. 2019. V. 9. № 66. P. 38834.
  21. Orekhov N., Ostroumova G., Stegailov V. // Carbon. 2020. V. 170. P. 606.
  22. Nazarychev V.M., Glova A.D., Volgin I.V. et al. // Int. J. Heat Mass Transf. 2021. V. 165. P. 120639.
  23. Ruochen Sun, Hui Qi, Pingan Liu et al. // J. Mol. Eng. Mat. 2020. V. 8. P. 2050001.
  24. Yasen Dai, Zhengrun Chen, Xingyi Liu et al. // Separation and Purification Technology. 2021. V. 279. P. 119717.
  25. Ponder J.W., Case D.A. // Adv. Prot. Chem. 2003. V. 66. P. 27.
  26. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. № 45. P. 11225.
  27. Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2010. V. 31. P. 671.
  28. Walker R.C., Crowley M.F., Case D.A. // J. Comput. Chem. 2008. V. 29. P. 1019.
  29. Wang J., Wang W., Kollman P.A. et al. // J. of Molecular Graphics and Modelling. 2006. V. 25.
  30. Wang J., Wolf R.M., Caldwell J. et al. // J. Comput. Chem., 2004. V. 25. P. 1157.
  31. Dodda L.S., Cabeza de Vaca I., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. № W1. P. W331.
  32. William J.L., Tirado-Rives J. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 19. P. 6665.
  33. Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. № 15. P. 3864.
  34. Jo S., Kim T., Iyer V.G. et al. // J. Comput. Chem. 2008. V. 29. P. 1859.
  35. Brooks B.R., Brooks C.L. III, MacKerell A.D. Jr. et al. // J. Comput. Chem. 2009. V. 30. P. 1545.
  36. Lee J., Cheng X., Swails J.M. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 405.
  37. Lorentz H.A. // Ann. Phys. 1881. V. 248. P. 127.
  38. Berthelot D.C.R. // Seances Acad. Sci. 1889. V. 126. P. 1703.
  39. Good R.J., Hope C.J. // J. Chem. Phys. 1970. V. 53. P. 540.
  40. Good R.J., Hope C.J. // Ibid. 1971. V. 55. P. 111.
  41. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19.
  42. Bussia G., Donadio D., and Parrinello M. // J. Phys. Chem. 2007. V. 126.
  43. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
  44. Sun H. // J. Phys. Chem. B. 1998. V. 102. № 38. P. 7338.
  45. Essmann U., Perera L., Berkowitz M. et al. // J. Chem. Phys. 1995. V. 103. P. 8577.
  46. Green M.S. // J. Chem. Phys. 1954. V. 22. № 3. P. 398.
  47. Kubo R. // J. Phys. Soc. Jpn. 1957. V. 12. № 6. P. 570.
  48. Hess B. // J. Chem. Phys. 2002. V. 116. P. 209.
  49. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. P. 2353.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (39KB)
3.

Скачать (49KB)
4.

Скачать (44KB)
5.

Скачать (47KB)

© О.В. Кашурин, Н.Д. Кондратюк, А.В. Ланкин, Г.Э. Норман, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах