Molecular Dynamics Simulation of Diisopropyl Ether Using Various Interatomic Potentials

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A comparative assessment of the accuracy of determining the density and viscosity has been carried out for diisopropyl ether using the method of classical molecular dynamics using three potentials. The accuracy of determining the viscosity coefficients when using equilibrium and nonequilibrium calculation methods was also investigated.

作者简介

O. Kashurin

Moscow Institute of Physics and Technology (National Research University)

Email: kashurin.ov@phystech.edu
Dolgoprudny, Moscow oblast, Russia

N. Kondratyuk

Moscow Institute of Physics and Technology (National Research University); Joint Institute for High Temperatures, Russian Academy of Sciences; National Research University Higher School of Economics

Email: kashurin.ov@phystech.edu
Moscow oblast, Russia; Moscow, Russia; Dolgoprudny; Moscow, Russia

A. Lankin

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: kashurin.ov@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

G. Norman

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: kashurin.ov@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

参考

  1. Campos Assuncao M., Cote G., Andre M. et al. // RSC Adv. 2017. № 7. P. 6922.
  2. Miran Milošević, Boelo Schuur, Andre B. De Haan // Chemical engineering transactions. 2011. V. 24. P. 733.
  3. Kristina Søborg Pedersen, Karin Michaelsen Nielsen, Jesper Fonslet et al. // Solvent Extraction and Ion Exchange. 2019. V. 37. № 5. P. 376.
  4. Piñeiro Á. // Fluid Phase Equilib. 2004. V. 216. P. 245.
  5. Kammerer K., Lichtenthaler R.N. // Thermochim. Acta. 1998. V. 310. P. 61.
  6. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. № 9. P. 2353.
  7. Mohammed Rashid Ali, Noor Asma Fazli Abdul Samad // Physics and Chemistry of Liquids. 2021. V. 59. № 4. P. 1.
  8. Gui Liu, Zhongwei Zhao, Ahmad Ghahreman // Hydrometallurgy. 2019. V. 187. P. 81.
  9. Xue-Qiang Zhang, Qi Jin, Yi-Ling Nan et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15503.
  10. Wei-Jing Chen, Chang-Xin Zhao, Bo-Quan Li et al. // Energy Environ. Mater. 2020. V. 3. P. 160.
  11. Manju Rani, Sanjeev Maken, So Jin Park // Korean J. Chem. Eng. 2019. V. 36. № 9. P. 1401.
  12. Гурина Д.Л., Антипова М.Л., Петренко В.Е. // Журн. физ. химии. 2011. Т. 85. № 5. С. 885.
  13. Антипова М.Л., Петренко В.Е. // Там же. 2013. Т. 87. № 7. С. 1196.
  14. Ланкин А.В., Норман Г.Э., Орехов М.А. // Там же. 2016. Т. 90. № 5. С. 710.
  15. Orekhov N., Kondratyuk N., Logunov M. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 1984.
  16. Gupta A.K. // Mater. Today Proc. 2021. V. 44. P. 2380.
  17. Min Zhou, Ke Cheng, Guo-Zhu Jia // J. Mol. Liq. 2017. V. 230. P. 137.
  18. Раззоков Д., Исмаилова О.Б., Маматкулов Ш.И. и др. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1339.
  19. Ewen J., Gattinoni C., Thakkar F. et al. // Materials. 2016. V. 9. № 8. P. 651.
  20. Glova A.D., Volgin I.V., Nazarychev V.M. et al. // RSC Adv. 2019. V. 9. № 66. P. 38834.
  21. Orekhov N., Ostroumova G., Stegailov V. // Carbon. 2020. V. 170. P. 606.
  22. Nazarychev V.M., Glova A.D., Volgin I.V. et al. // Int. J. Heat Mass Transf. 2021. V. 165. P. 120639.
  23. Ruochen Sun, Hui Qi, Pingan Liu et al. // J. Mol. Eng. Mat. 2020. V. 8. P. 2050001.
  24. Yasen Dai, Zhengrun Chen, Xingyi Liu et al. // Separation and Purification Technology. 2021. V. 279. P. 119717.
  25. Ponder J.W., Case D.A. // Adv. Prot. Chem. 2003. V. 66. P. 27.
  26. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. № 45. P. 11225.
  27. Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2010. V. 31. P. 671.
  28. Walker R.C., Crowley M.F., Case D.A. // J. Comput. Chem. 2008. V. 29. P. 1019.
  29. Wang J., Wang W., Kollman P.A. et al. // J. of Molecular Graphics and Modelling. 2006. V. 25.
  30. Wang J., Wolf R.M., Caldwell J. et al. // J. Comput. Chem., 2004. V. 25. P. 1157.
  31. Dodda L.S., Cabeza de Vaca I., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. № W1. P. W331.
  32. William J.L., Tirado-Rives J. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 19. P. 6665.
  33. Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. № 15. P. 3864.
  34. Jo S., Kim T., Iyer V.G. et al. // J. Comput. Chem. 2008. V. 29. P. 1859.
  35. Brooks B.R., Brooks C.L. III, MacKerell A.D. Jr. et al. // J. Comput. Chem. 2009. V. 30. P. 1545.
  36. Lee J., Cheng X., Swails J.M. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 405.
  37. Lorentz H.A. // Ann. Phys. 1881. V. 248. P. 127.
  38. Berthelot D.C.R. // Seances Acad. Sci. 1889. V. 126. P. 1703.
  39. Good R.J., Hope C.J. // J. Chem. Phys. 1970. V. 53. P. 540.
  40. Good R.J., Hope C.J. // Ibid. 1971. V. 55. P. 111.
  41. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19.
  42. Bussia G., Donadio D., and Parrinello M. // J. Phys. Chem. 2007. V. 126.
  43. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
  44. Sun H. // J. Phys. Chem. B. 1998. V. 102. № 38. P. 7338.
  45. Essmann U., Perera L., Berkowitz M. et al. // J. Chem. Phys. 1995. V. 103. P. 8577.
  46. Green M.S. // J. Chem. Phys. 1954. V. 22. № 3. P. 398.
  47. Kubo R. // J. Phys. Soc. Jpn. 1957. V. 12. № 6. P. 570.
  48. Hess B. // J. Chem. Phys. 2002. V. 116. P. 209.
  49. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. P. 2353.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (39KB)
3.

下载 (49KB)
4.

下载 (44KB)
5.

下载 (47KB)

版权所有 © О.В. Кашурин, Н.Д. Кондратюк, А.В. Ланкин, Г.Э. Норман, 2023

##common.cookie##