Molecular Dynamics Simulation of Diisopropyl Ether Using Various Interatomic Potentials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comparative assessment of the accuracy of determining the density and viscosity has been carried out for diisopropyl ether using the method of classical molecular dynamics using three potentials. The accuracy of determining the viscosity coefficients when using equilibrium and nonequilibrium calculation methods was also investigated.

Sobre autores

O. Kashurin

Moscow Institute of Physics and Technology (National Research University)

Email: kashurin.ov@phystech.edu
Dolgoprudny, Moscow oblast, Russia

N. Kondratyuk

Moscow Institute of Physics and Technology (National Research University); Joint Institute for High Temperatures, Russian Academy of Sciences; National Research University Higher School of Economics

Email: kashurin.ov@phystech.edu
Moscow oblast, Russia; Moscow, Russia; Dolgoprudny; Moscow, Russia

A. Lankin

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: kashurin.ov@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

G. Norman

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics

Autor responsável pela correspondência
Email: kashurin.ov@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

Bibliografia

  1. Campos Assuncao M., Cote G., Andre M. et al. // RSC Adv. 2017. № 7. P. 6922.
  2. Miran Milošević, Boelo Schuur, Andre B. De Haan // Chemical engineering transactions. 2011. V. 24. P. 733.
  3. Kristina Søborg Pedersen, Karin Michaelsen Nielsen, Jesper Fonslet et al. // Solvent Extraction and Ion Exchange. 2019. V. 37. № 5. P. 376.
  4. Piñeiro Á. // Fluid Phase Equilib. 2004. V. 216. P. 245.
  5. Kammerer K., Lichtenthaler R.N. // Thermochim. Acta. 1998. V. 310. P. 61.
  6. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. № 9. P. 2353.
  7. Mohammed Rashid Ali, Noor Asma Fazli Abdul Samad // Physics and Chemistry of Liquids. 2021. V. 59. № 4. P. 1.
  8. Gui Liu, Zhongwei Zhao, Ahmad Ghahreman // Hydrometallurgy. 2019. V. 187. P. 81.
  9. Xue-Qiang Zhang, Qi Jin, Yi-Ling Nan et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15503.
  10. Wei-Jing Chen, Chang-Xin Zhao, Bo-Quan Li et al. // Energy Environ. Mater. 2020. V. 3. P. 160.
  11. Manju Rani, Sanjeev Maken, So Jin Park // Korean J. Chem. Eng. 2019. V. 36. № 9. P. 1401.
  12. Гурина Д.Л., Антипова М.Л., Петренко В.Е. // Журн. физ. химии. 2011. Т. 85. № 5. С. 885.
  13. Антипова М.Л., Петренко В.Е. // Там же. 2013. Т. 87. № 7. С. 1196.
  14. Ланкин А.В., Норман Г.Э., Орехов М.А. // Там же. 2016. Т. 90. № 5. С. 710.
  15. Orekhov N., Kondratyuk N., Logunov M. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 1984.
  16. Gupta A.K. // Mater. Today Proc. 2021. V. 44. P. 2380.
  17. Min Zhou, Ke Cheng, Guo-Zhu Jia // J. Mol. Liq. 2017. V. 230. P. 137.
  18. Раззоков Д., Исмаилова О.Б., Маматкулов Ш.И. и др. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1339.
  19. Ewen J., Gattinoni C., Thakkar F. et al. // Materials. 2016. V. 9. № 8. P. 651.
  20. Glova A.D., Volgin I.V., Nazarychev V.M. et al. // RSC Adv. 2019. V. 9. № 66. P. 38834.
  21. Orekhov N., Ostroumova G., Stegailov V. // Carbon. 2020. V. 170. P. 606.
  22. Nazarychev V.M., Glova A.D., Volgin I.V. et al. // Int. J. Heat Mass Transf. 2021. V. 165. P. 120639.
  23. Ruochen Sun, Hui Qi, Pingan Liu et al. // J. Mol. Eng. Mat. 2020. V. 8. P. 2050001.
  24. Yasen Dai, Zhengrun Chen, Xingyi Liu et al. // Separation and Purification Technology. 2021. V. 279. P. 119717.
  25. Ponder J.W., Case D.A. // Adv. Prot. Chem. 2003. V. 66. P. 27.
  26. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. № 45. P. 11225.
  27. Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2010. V. 31. P. 671.
  28. Walker R.C., Crowley M.F., Case D.A. // J. Comput. Chem. 2008. V. 29. P. 1019.
  29. Wang J., Wang W., Kollman P.A. et al. // J. of Molecular Graphics and Modelling. 2006. V. 25.
  30. Wang J., Wolf R.M., Caldwell J. et al. // J. Comput. Chem., 2004. V. 25. P. 1157.
  31. Dodda L.S., Cabeza de Vaca I., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. № W1. P. W331.
  32. William J.L., Tirado-Rives J. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 19. P. 6665.
  33. Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. № 15. P. 3864.
  34. Jo S., Kim T., Iyer V.G. et al. // J. Comput. Chem. 2008. V. 29. P. 1859.
  35. Brooks B.R., Brooks C.L. III, MacKerell A.D. Jr. et al. // J. Comput. Chem. 2009. V. 30. P. 1545.
  36. Lee J., Cheng X., Swails J.M. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 405.
  37. Lorentz H.A. // Ann. Phys. 1881. V. 248. P. 127.
  38. Berthelot D.C.R. // Seances Acad. Sci. 1889. V. 126. P. 1703.
  39. Good R.J., Hope C.J. // J. Chem. Phys. 1970. V. 53. P. 540.
  40. Good R.J., Hope C.J. // Ibid. 1971. V. 55. P. 111.
  41. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19.
  42. Bussia G., Donadio D., and Parrinello M. // J. Phys. Chem. 2007. V. 126.
  43. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
  44. Sun H. // J. Phys. Chem. B. 1998. V. 102. № 38. P. 7338.
  45. Essmann U., Perera L., Berkowitz M. et al. // J. Chem. Phys. 1995. V. 103. P. 8577.
  46. Green M.S. // J. Chem. Phys. 1954. V. 22. № 3. P. 398.
  47. Kubo R. // J. Phys. Soc. Jpn. 1957. V. 12. № 6. P. 570.
  48. Hess B. // J. Chem. Phys. 2002. V. 116. P. 209.
  49. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. P. 2353.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (39KB)
3.

Baixar (49KB)
4.

Baixar (44KB)
5.

Baixar (47KB)

Declaração de direitos autorais © О.В. Кашурин, Н.Д. Кондратюк, А.В. Ланкин, Г.Э. Норман, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies