REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE
- Authors: Zhukov A.A.1, Batov I.E.1,2
-
Affiliations:
- Osipyan Institute of Solid State Physics RAS
- Faculty of Physics, National Research University Higher School of Economics
- Issue: Vol 165, No 3 (2024)
- Pages: 424-437
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256501
- DOI: https://doi.org/10.31857/S004445102403012X
- ID: 256501
Cite item
Abstract
We report on the low temperature measurements of the magnetotransport in Si-doped InAs quantum wire in the presence of a charged tip of an atomic force microscope serving as a mobile gate, i.e. scanning gate microscopy (SGM). By altering the carrier concentration with back gate voltage, we transfer the wire through several transport regimes: from residual Coulomb blockade to nonlinear resonance regime, followed by linear resonance regime and, finally, to almost homogeneous diffusion regime. We demonstrate direct relations between patterns measured with scanning gate microscopy and spectra of universal conductance fluctuations in the dependence of conductance on magnetic field (R-1(B)). Additionally, a clear sign of fractal behavior of R-1(B) curve is observed for non-linear and linear resonance transport regimes.
About the authors
A. A. Zhukov
Osipyan Institute of Solid State Physics RAS
Email: azhukov@issp.ac.ru
Russian Federation, 142432, Chernogolovka
I. E. Batov
Osipyan Institute of Solid State Physics RAS; Faculty of Physics, National Research University Higher School of Economics
Author for correspondence.
Email: azhukov@issp.ac.ru
Russian Federation, 142432, Chernogolovka; 101000, Moscow
References
- S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, Cambridge (1995).
- B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Conductors, ed. by A. J. Efros and M. Pollack, Elsevier Sci., North-Holland (1985).
- А. А. Жуков, К. Фольк, Т. Шеперс, ЖЭТФ 161, 116 (2022) [A. A. Zhukov, Ch. Volk, and Th. Sch¨apers, JETP 134, 95 (2022)].
- Y. Imry, Introduction to Mesoscopic Physics, Oxford Univ. Press, Oxford (1997).
- B. L. Altshuler, Pisma v Zh. Eksp. Teor. Fiz. 41 , 530 (1985) [JETP Lett. 41, 648 (1985)].
- P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).
- C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).
- R. Ketzmerick, Phys. Rev. B 54, 10841 (1996).
- B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).
- M. Jannsen, Int. J. Mod. Phys. B 08, 943 (1994).
- F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
- A. H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G. Reckziegel, and R. Tuzinski, Phys. Rev. Lett. 77, 3885 (1996).
- C. A. Marlow, R. P. Taylor, T. P. Martin, B. C. Scannell, H. Linke, M. S. Fairbanks, G. D. R. Hall, I. Shorubalko, L. Samuelson, T. M. Fromhold, C. V. Brown, B. Hackens, S. Faniel, C. Gustin, V. Bayot, X. Wallart, S. Bollaert, and A. Cappy, Phys. Rev. B 73, 195318 (2006).
- K. R. Amin, S. S. Ray, N. Pal et al., Commun. Phys. 1, 1 (2018); https://doi.org/10.1038/s42005-017-0001-4.
- S. Wirths, K. Weis, A. Winden, K. Sladek, Ch. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lu¨th, N. Demarina, D. Gru¨tzmacher, and Th. Sch¨apers, J. Appl. Phys. 110, 053709 (2011).
- M. Akabori, K. Sladek, H. Hardtdegen, Th. Sch¨apers, and D. Gru¨tzmacher, J. Cryst. Growth 311, 3813 (2009).
- A. A. Zhukov, Instrum. Exp. Tech. 51, 130 (2008).
- K. Weis, St. Wirths, A. Winden, K. Sladek, H. Hardtdegen, H. Lu¨th, D. Gru¨tzmacher, and Th. Sch¨apers, Nanotechnology 25, 135203 (2014).
- O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006).
- V. F. Gantmakher, Electrons and Disorder in Solids, Oxford Univ. Press, Oxford (2005).
- M. T. Woodside and P. L. McEuen, Science 296, 1098 (2002).
- A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Condens. Matter 26, 165304 (2014).
- A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2005).
- S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari, M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev. B 79, 121311(R) (2009).
- P. Roulleau, T. Choi, S. Riedi, T. Heinzel, I. Shorubalko, T. Ihn, and K. Ensslin, Phys. Rev. B 81, 155449 (2010).
- Ch. Bl¨omers, M. I. Lepsa, M. Luysberg, D. Gru¨tzmacher, H. Lu¨th, and Th. Sch¨apers, Nano Lett. 11, 3550 (2011).
- E. E. Boyd, K. Storm, L. Samuelson, and R. M. Westervelt, Nanotechnology 22, 185201 (2011).
- L. B. Wang, J. K. Guo, N. Kang, D. Pan, S. Li, D. Fan, J. Zhao, and H. Q. Xu, Appl. Phys. Lett. 106, 173105 (2015).
- K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Sci. Rep. 7, 930 (2017).
- D. Liang, J. Du, and X. P. A. Gao, Phys. Rev. B 81, 153304 (2010).
- A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev. Lett. 99, 066801 (2007).
- L. B. Wang, D. Pan, G. Y. Huang, J. Zhao, N. Kang, and H. Q. Xu, Nanotechnology 30, 124001 (2019).
- H. Lu¨th, Ch. Bl¨omers, Th. Richter, J. Wensorra, S. Est´evez Hern´andez, G. Petersen, M. Lepsa, Th. Sch¨apers, M. Marso, M. Indlekofer, R. Calarco, R. Demarina, and D. Gru¨tzmacher, Phys. Stat. Sol. C 7, 386 (2010).
- H. Haucke et al., Phys. Rev. B 41, 12454 (1990).
- A. A. Zhukov et al., JETP 115, 1062 (2012).
- A. A. Zhukov et al., JETP 116, 138 (2013).
- A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Cond. Matt. 26, 165304 (2014).
- B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
- A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. B 56, 13393 (1997).
- B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 45, 199 (1987).
- B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 51, 5480 (1995).
- A. D. Mirlin, JETP Lett. 62, 603 (1995).
Supplementary files
