RAZLIChNYE REZhIMY ELEKTRONNOGO TRANSPORTA V DOPIROVANNYKh NANOPROVOLOKAKh InAs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Представлены результаты измерения магнитотранспорта в допированных кремнием нанопроволоках InAs в присутствии проводящего острия атомно-силового микроскопа, так называемая техника scanning gate microscopy (SGM). Увеличивая концентрацию носителей в нанопроволоке путем прикладывания положительного напряжения на нижний затвор, удалось последовательно провести транспорт в нанопроволоке через четыре различных режима, а именно, остаточный режим кулоновской блокады, резонансный нелинейный и линейный режимы и, наконец, режим практичски однородного диффузного транспорта. Продемонстрирована связь между особенностями результатов сканирования техникой SGM и спектром универсальных флуктуаций проводимости (R−1B)). Кроме того, показано фрактальное поведение кривой R−1(B) в нелинейном и линейном режимах резонансного транспорта.

作者简介

A. Zhukov

Email: azhukov@issp.ac.ru

I. Batov

参考

  1. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, Cambridge (1995).
  2. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Conductors, ed. by A. J. Efros and M. Pollack, Elsevier Sci., North-Holland (1985).
  3. А. А. Жуков, К. Фольк, Т. Шеперс, ЖЭТФ 161, 116 (2022) [A. A. Zhukov, Ch. Volk, and Th. Sch¨apers, JETP 134, 95 (2022)].
  4. Y. Imry, Introduction to Mesoscopic Physics, Oxford Univ. Press, Oxford (1997).
  5. B. L. Altshuler, Pisma v Zh. Eksp. Teor. Fiz. 41 , 530 (1985) [JETP Lett. 41, 648 (1985)].
  6. P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).
  7. C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).
  8. R. Ketzmerick, Phys. Rev. B 54, 10841 (1996).
  9. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).
  10. M. Jannsen, Int. J. Mod. Phys. B 08, 943 (1994).
  11. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
  12. A. H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G. Reckziegel, and R. Tuzinski, Phys. Rev. Lett. 77, 3885 (1996).
  13. C. A. Marlow, R. P. Taylor, T. P. Martin, B. C. Scannell, H. Linke, M. S. Fairbanks, G. D. R. Hall, I. Shorubalko, L. Samuelson, T. M. Fromhold, C. V. Brown, B. Hackens, S. Faniel, C. Gustin, V. Bayot, X. Wallart, S. Bollaert, and A. Cappy, Phys. Rev. B 73, 195318 (2006).
  14. K. R. Amin, S. S. Ray, N. Pal et al., Commun. Phys. 1, 1 (2018); https://doi.org/10.1038/s42005-017-0001-4.
  15. S. Wirths, K. Weis, A. Winden, K. Sladek, Ch. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lu¨th, N. Demarina, D. Gru¨tzmacher, and Th. Sch¨apers, J. Appl. Phys. 110, 053709 (2011).
  16. M. Akabori, K. Sladek, H. Hardtdegen, Th. Sch¨apers, and D. Gru¨tzmacher, J. Cryst. Growth 311, 3813 (2009).
  17. A. A. Zhukov, Instrum. Exp. Tech. 51, 130 (2008).
  18. K. Weis, St. Wirths, A. Winden, K. Sladek, H. Hardtdegen, H. Lu¨th, D. Gru¨tzmacher, and Th. Sch¨apers, Nanotechnology 25, 135203 (2014).
  19. O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006).
  20. V. F. Gantmakher, Electrons and Disorder in Solids, Oxford Univ. Press, Oxford (2005).
  21. M. T. Woodside and P. L. McEuen, Science 296, 1098 (2002).
  22. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Condens. Matter 26, 165304 (2014).
  23. A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2005).
  24. S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari, M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev. B 79, 121311(R) (2009).
  25. P. Roulleau, T. Choi, S. Riedi, T. Heinzel, I. Shorubalko, T. Ihn, and K. Ensslin, Phys. Rev. B 81, 155449 (2010).
  26. Ch. Bl¨omers, M. I. Lepsa, M. Luysberg, D. Gru¨tzmacher, H. Lu¨th, and Th. Sch¨apers, Nano Lett. 11, 3550 (2011).
  27. E. E. Boyd, K. Storm, L. Samuelson, and R. M. Westervelt, Nanotechnology 22, 185201 (2011).
  28. L. B. Wang, J. K. Guo, N. Kang, D. Pan, S. Li, D. Fan, J. Zhao, and H. Q. Xu, Appl. Phys. Lett. 106, 173105 (2015).
  29. K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Sci. Rep. 7, 930 (2017).
  30. D. Liang, J. Du, and X. P. A. Gao, Phys. Rev. B 81, 153304 (2010).
  31. A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev. Lett. 99, 066801 (2007).
  32. L. B. Wang, D. Pan, G. Y. Huang, J. Zhao, N. Kang, and H. Q. Xu, Nanotechnology 30, 124001 (2019).
  33. H. Lu¨th, Ch. Bl¨omers, Th. Richter, J. Wensorra, S. Est´evez Hern´andez, G. Petersen, M. Lepsa, Th. Sch¨apers, M. Marso, M. Indlekofer, R. Calarco, R. Demarina, and D. Gru¨tzmacher, Phys. Stat. Sol. C 7, 386 (2010).
  34. H. Haucke et al., Phys. Rev. B 41, 12454 (1990).
  35. A. A. Zhukov et al., JETP 115, 1062 (2012).
  36. A. A. Zhukov et al., JETP 116, 138 (2013).
  37. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Cond. Matt. 26, 165304 (2014).
  38. B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
  39. A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. B 56, 13393 (1997).
  40. B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 45, 199 (1987).
  41. B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 51, 5480 (1995).
  42. A. D. Mirlin, JETP Lett. 62, 603 (1995).

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##