Acoustic Solitons in Helicoids and Spiral Graphene Nanoribbons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dynamics of local regions of longitudinal compression in graphene helicoids and spiral carbon nanoribbons has been numerically simulated. It has been shown that a supersonic acoustic soliton can constantly move without radiation of phonons only in helicoids with transverse radius R < 0.62 nm. Dimensionless velocity s of the soliton in this case falls into the interval 1.0–1.4. In larger radius helicoids and all spiral carbon nanoribbons, the motion of a soliton-like excitation is always accompanied by the intense radiation of phonons (the more the size of the spiral structure, the more intense the radiation).

About the authors

A. V Savin

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: asavin@chph.ras.ru
119991, Moscow, Russia; 117997, Moscow, Russia

O. I Savina

Plekhanov Russian University of Economics

Author for correspondence.
Email: asavin@chph.ras.ru
117997, Moscow, Russia

References

  1. Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, and K. Matsuda, J. Amer. Chem. Soc. 140, 4317 (2018); https://doi.org/10.1021/jacs.7b13412.
  2. Y. Nakakuki, T. Hirose, and K. Matsuda, J. Amer. Chem. Soc. 140, 15461 (2018); https://doi.org/10.1021/jacs.8b09825.
  3. Y. Zhao, C. Zhang, D. D. Kohler, J. M. Scheeler, J. C. Wright, P. M. Voyles, and S. Jin, Science 370, 442 (2020); https://doi.org/10.1126/science.abc4284.
  4. S. Avdoshenko, P. Koskinen, H. Sevincli, A. A. Popov, and C. G. Rocha, Sci. Rep. 3, 1632 (2013); https://doi.org/10.1038/srep01632.
  5. T. Korhonen and P. Koskinen, AIP Advances 4, 127125 (2014); https://doi.org/10.1063/1.4904219.
  6. X. Zhang and M. Zhao, Sci. Rep. 4, 5699 (2014); https://doi.org/10.1038/srep05699.
  7. V. Atanasov and A. Saxena, Phys. Rev. B 92, 035440 (2015); https://doi.org/10.1103/PhysRevB.92.035440.
  8. X. Xu, B. Liu, W. Zhao, Y. Jiang, L. Liu, W. Li, G. Zhang, and W. Q. Tian, Nanoscale 9, 9693 (2017); https://doi.org/10.1039/C7NR03432F.
  9. J. Tan, X. Zhang, W. Liu, X. He, and M. Zhao, Nanotechnology 29, 205202 (2018); https://doi.org/10.1088/1361-6528/aab1d9.
  10. V. V. Porsev, A. V. Bandura, S. I. Lukyanov, and R. A. Evarestov, Carbon 152, 755 (2019); https://doi.org/10.1016/j.carbon.2019.06.036.
  11. Z.-P. Liu, Y.-D. Guo, X.-H. Yan, H.-L. Zeng, X.-Y. Mou, Z.-R. Wang, and J.-J. Wang, J. Appl. Phys. 126, 144303 (2019); https://doi.org/10.1063/1.5118738.
  12. R. Thakur, P. K. Ahluwalia, A. Kumar, and R. Sharma, Physica E 129, 114638 (2021); https://doi.org/10.1016/j.physe.2021.114638.
  13. Z. Zhou, L. Yan, X.-M. Wang, D. Zhang, and J.-Y. Yan, Results Phys. 35, 105351 (2022); https://doi.org/10.1016/j.rinp.2022.105351.
  14. F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 16, 34 (2016); https://doi.org/10.1021/acs.nanolett.5b02430.
  15. V. Porsev and R. Evarestov, Nanomaterials 13, 415 (2023); https://doi.org/10.3390/nano13030415.
  16. P. Sestak, J. Wu, J. He, J. Pokluda, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 18684 (2015); https://doi.org/10.1039/c5cp02043c.
  17. H. Zhan, Y. Zhang, C. Yang, G. Zhang, and Y. Gu, Carbon, 120, 258 (2017); https://doi.org/10.1016/j.carbon.2017.05.044.
  18. H. Zhan, G. Zhang, C. Yang, and Y. Gu, Nanoscale, 10, 18961 (2018); https://doi.org/10.1039/C8NR04882G.
  19. S. Norouzi and M. M. S. Fakhrabadi, Appl. Phys. A 125, 321 (2019); https://doi.org/10.1007/s00339-019-2623-8.
  20. C. Zhu, J. Ji, Z. Zhang, S. Dong, N. Wei, and J. Zhao, Mech. Mater. 153, 103683 (2021); https://doi.org/10.1016/j.mechmat.2020.103683.
  21. R. Liu, J. Zhao, L. Wang, and N. Wei, Nanotechnology 31, 025709 (2020); https://doi.org/10.1088/1361-6528/ab4760.
  22. A. Shari an, A. Moshfegh, A. Javadzadegan, H. H. Afrouzi, M. Baghani, and M. Baniassadi, Phys. Chem. Chem. Phys. 21, 12423 (2019); https://doi.org/10.1039/C9CP01361J.
  23. H. Li, H. H. Afrouzi, M. M. A. Zahra, B. S. Bashar, F. Fathdal, S. K. Hadrawi, A. Alizadeh, M. Hekmatifar, K. Al-Majdi, and I. Alhani, Colloids Surf. A: Physicochem. Eng. Asp. 656, 130324 (2023); https://doi.org/10.1016/j.colsurfa.2022.130324.
  24. H. Zhan, G. Zhang, C. Yang, and Y. T. Gu, Phys. Chem. C 122, 7605 (2018); https://doi.org/10.1021/acs.jpcc.8b00868.
  25. S. Norouzi and M. M. S. Fakhrabadi, J. Phys. Chem. Sol. 137, 109228 (2020); https://doi.org/10.1016/j.jpcs.2019.109228.
  26. A. Shari an, T. Karbaschi, A. Rajabpour, M. Baghani, J.Wu, and M. Baniassadi, Int. J. Heat Mass Transfer 189, 122719 (2022); https://doi.org/10.1016/j.ijheatmasstransfer.2022.122719.
  27. V. F. Nesterenko, Philos. Trans. Royal Soc. A 376, 2127 (2018); https://doi.org/10.1098/rsta.2017.0130
  28. P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys. Rev. E 56, 877 (1997); https://doi.org/10.1103/PhysRevE.56.877.
  29. Y. Zolotaryuk, A. V. Savin, and P. L. Christiansen, Phys. Rev. B 57, 14213 (1998); https://doi.org/10.1103/PhysRevB.57.14213.
  30. W. D. Cornell, W. P. Cieplak, C. I. Bayly, R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Amer. Chem. Soc. 117, 5179 (1995); https://doi.org/10.1021/ja00124a002.
  31. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010); https://doi.org/10.1103/PhysRevB.82.195422.
  32. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 98, 193106 (2011); https://doi.org/10.1063/1.3590256.
  33. A. V. Savin and Y. S. Kivshar, Phys. Rev. B 85, 125427 (2012); https://doi.org/10.1103/PhysRevB.85.125427.
  34. A. V. Savin and Y. S. Kivshar, Sci. Rep. 7, 4668 (2017); https://10.1038/s41598-017-04987-w.
  35. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112 (14), 6472 (2000); https://doi.org/10.1063/1.481208.
  36. R. Setton, Carbon 34(1), 69 (1996); https://doi.org/10.1016/0008-6223(95)00136-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».