Akusticheskie solitony v gelikoidakh i spiral'nykh nanolentakh grafena

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamics of local regions of longitudinal compression in graphene helicoids and spiral carbon nanoribbons has been numerically simulated. It has been shown that a supersonic acoustic soliton can constantly move without radiation of phonons only in helicoids with transverse radius R < 0.62 nm. Dimensionless velocity s of the soliton in this case falls into the interval 1.0–1.4. In larger radius helicoids and all spiral carbon nanoribbons, the motion of a soliton-like excitation is always accompanied by the intense radiation of phonons (the more the size of the spiral structure, the more intense the radiation).

Sobre autores

A. Savin

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: asavin@chph.ras.ru
119991, Moscow, Russia; 117997, Moscow, Russia

O. Savina

Plekhanov Russian University of Economics

Autor responsável pela correspondência
Email: asavin@chph.ras.ru
117997, Moscow, Russia

Bibliografia

  1. Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, and K. Matsuda, J. Amer. Chem. Soc. 140, 4317 (2018); https://doi.org/10.1021/jacs.7b13412.
  2. Y. Nakakuki, T. Hirose, and K. Matsuda, J. Amer. Chem. Soc. 140, 15461 (2018); https://doi.org/10.1021/jacs.8b09825.
  3. Y. Zhao, C. Zhang, D. D. Kohler, J. M. Scheeler, J. C. Wright, P. M. Voyles, and S. Jin, Science 370, 442 (2020); https://doi.org/10.1126/science.abc4284.
  4. S. Avdoshenko, P. Koskinen, H. Sevincli, A. A. Popov, and C. G. Rocha, Sci. Rep. 3, 1632 (2013); https://doi.org/10.1038/srep01632.
  5. T. Korhonen and P. Koskinen, AIP Advances 4, 127125 (2014); https://doi.org/10.1063/1.4904219.
  6. X. Zhang and M. Zhao, Sci. Rep. 4, 5699 (2014); https://doi.org/10.1038/srep05699.
  7. V. Atanasov and A. Saxena, Phys. Rev. B 92, 035440 (2015); https://doi.org/10.1103/PhysRevB.92.035440.
  8. X. Xu, B. Liu, W. Zhao, Y. Jiang, L. Liu, W. Li, G. Zhang, and W. Q. Tian, Nanoscale 9, 9693 (2017); https://doi.org/10.1039/C7NR03432F.
  9. J. Tan, X. Zhang, W. Liu, X. He, and M. Zhao, Nanotechnology 29, 205202 (2018); https://doi.org/10.1088/1361-6528/aab1d9.
  10. V. V. Porsev, A. V. Bandura, S. I. Lukyanov, and R. A. Evarestov, Carbon 152, 755 (2019); https://doi.org/10.1016/j.carbon.2019.06.036.
  11. Z.-P. Liu, Y.-D. Guo, X.-H. Yan, H.-L. Zeng, X.-Y. Mou, Z.-R. Wang, and J.-J. Wang, J. Appl. Phys. 126, 144303 (2019); https://doi.org/10.1063/1.5118738.
  12. R. Thakur, P. K. Ahluwalia, A. Kumar, and R. Sharma, Physica E 129, 114638 (2021); https://doi.org/10.1016/j.physe.2021.114638.
  13. Z. Zhou, L. Yan, X.-M. Wang, D. Zhang, and J.-Y. Yan, Results Phys. 35, 105351 (2022); https://doi.org/10.1016/j.rinp.2022.105351.
  14. F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 16, 34 (2016); https://doi.org/10.1021/acs.nanolett.5b02430.
  15. V. Porsev and R. Evarestov, Nanomaterials 13, 415 (2023); https://doi.org/10.3390/nano13030415.
  16. P. Sestak, J. Wu, J. He, J. Pokluda, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 18684 (2015); https://doi.org/10.1039/c5cp02043c.
  17. H. Zhan, Y. Zhang, C. Yang, G. Zhang, and Y. Gu, Carbon, 120, 258 (2017); https://doi.org/10.1016/j.carbon.2017.05.044.
  18. H. Zhan, G. Zhang, C. Yang, and Y. Gu, Nanoscale, 10, 18961 (2018); https://doi.org/10.1039/C8NR04882G.
  19. S. Norouzi and M. M. S. Fakhrabadi, Appl. Phys. A 125, 321 (2019); https://doi.org/10.1007/s00339-019-2623-8.
  20. C. Zhu, J. Ji, Z. Zhang, S. Dong, N. Wei, and J. Zhao, Mech. Mater. 153, 103683 (2021); https://doi.org/10.1016/j.mechmat.2020.103683.
  21. R. Liu, J. Zhao, L. Wang, and N. Wei, Nanotechnology 31, 025709 (2020); https://doi.org/10.1088/1361-6528/ab4760.
  22. A. Shari an, A. Moshfegh, A. Javadzadegan, H. H. Afrouzi, M. Baghani, and M. Baniassadi, Phys. Chem. Chem. Phys. 21, 12423 (2019); https://doi.org/10.1039/C9CP01361J.
  23. H. Li, H. H. Afrouzi, M. M. A. Zahra, B. S. Bashar, F. Fathdal, S. K. Hadrawi, A. Alizadeh, M. Hekmatifar, K. Al-Majdi, and I. Alhani, Colloids Surf. A: Physicochem. Eng. Asp. 656, 130324 (2023); https://doi.org/10.1016/j.colsurfa.2022.130324.
  24. H. Zhan, G. Zhang, C. Yang, and Y. T. Gu, Phys. Chem. C 122, 7605 (2018); https://doi.org/10.1021/acs.jpcc.8b00868.
  25. S. Norouzi and M. M. S. Fakhrabadi, J. Phys. Chem. Sol. 137, 109228 (2020); https://doi.org/10.1016/j.jpcs.2019.109228.
  26. A. Shari an, T. Karbaschi, A. Rajabpour, M. Baghani, J.Wu, and M. Baniassadi, Int. J. Heat Mass Transfer 189, 122719 (2022); https://doi.org/10.1016/j.ijheatmasstransfer.2022.122719.
  27. V. F. Nesterenko, Philos. Trans. Royal Soc. A 376, 2127 (2018); https://doi.org/10.1098/rsta.2017.0130
  28. P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys. Rev. E 56, 877 (1997); https://doi.org/10.1103/PhysRevE.56.877.
  29. Y. Zolotaryuk, A. V. Savin, and P. L. Christiansen, Phys. Rev. B 57, 14213 (1998); https://doi.org/10.1103/PhysRevB.57.14213.
  30. W. D. Cornell, W. P. Cieplak, C. I. Bayly, R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Amer. Chem. Soc. 117, 5179 (1995); https://doi.org/10.1021/ja00124a002.
  31. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010); https://doi.org/10.1103/PhysRevB.82.195422.
  32. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 98, 193106 (2011); https://doi.org/10.1063/1.3590256.
  33. A. V. Savin and Y. S. Kivshar, Phys. Rev. B 85, 125427 (2012); https://doi.org/10.1103/PhysRevB.85.125427.
  34. A. V. Savin and Y. S. Kivshar, Sci. Rep. 7, 4668 (2017); https://10.1038/s41598-017-04987-w.
  35. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112 (14), 6472 (2000); https://doi.org/10.1063/1.481208.
  36. R. Setton, Carbon 34(1), 69 (1996); https://doi.org/10.1016/0008-6223(95)00136-0.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies