Akusticheskie solitony v gelikoidakh i spiral'nykh nanolentakh grafena

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dynamics of local regions of longitudinal compression in graphene helicoids and spiral carbon nanoribbons has been numerically simulated. It has been shown that a supersonic acoustic soliton can constantly move without radiation of phonons only in helicoids with transverse radius R < 0.62 nm. Dimensionless velocity s of the soliton in this case falls into the interval 1.0–1.4. In larger radius helicoids and all spiral carbon nanoribbons, the motion of a soliton-like excitation is always accompanied by the intense radiation of phonons (the more the size of the spiral structure, the more intense the radiation).

作者简介

A. Savin

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: asavin@chph.ras.ru
119991, Moscow, Russia; 117997, Moscow, Russia

O. Savina

Plekhanov Russian University of Economics

编辑信件的主要联系方式.
Email: asavin@chph.ras.ru
117997, Moscow, Russia

参考

  1. Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, and K. Matsuda, J. Amer. Chem. Soc. 140, 4317 (2018); https://doi.org/10.1021/jacs.7b13412.
  2. Y. Nakakuki, T. Hirose, and K. Matsuda, J. Amer. Chem. Soc. 140, 15461 (2018); https://doi.org/10.1021/jacs.8b09825.
  3. Y. Zhao, C. Zhang, D. D. Kohler, J. M. Scheeler, J. C. Wright, P. M. Voyles, and S. Jin, Science 370, 442 (2020); https://doi.org/10.1126/science.abc4284.
  4. S. Avdoshenko, P. Koskinen, H. Sevincli, A. A. Popov, and C. G. Rocha, Sci. Rep. 3, 1632 (2013); https://doi.org/10.1038/srep01632.
  5. T. Korhonen and P. Koskinen, AIP Advances 4, 127125 (2014); https://doi.org/10.1063/1.4904219.
  6. X. Zhang and M. Zhao, Sci. Rep. 4, 5699 (2014); https://doi.org/10.1038/srep05699.
  7. V. Atanasov and A. Saxena, Phys. Rev. B 92, 035440 (2015); https://doi.org/10.1103/PhysRevB.92.035440.
  8. X. Xu, B. Liu, W. Zhao, Y. Jiang, L. Liu, W. Li, G. Zhang, and W. Q. Tian, Nanoscale 9, 9693 (2017); https://doi.org/10.1039/C7NR03432F.
  9. J. Tan, X. Zhang, W. Liu, X. He, and M. Zhao, Nanotechnology 29, 205202 (2018); https://doi.org/10.1088/1361-6528/aab1d9.
  10. V. V. Porsev, A. V. Bandura, S. I. Lukyanov, and R. A. Evarestov, Carbon 152, 755 (2019); https://doi.org/10.1016/j.carbon.2019.06.036.
  11. Z.-P. Liu, Y.-D. Guo, X.-H. Yan, H.-L. Zeng, X.-Y. Mou, Z.-R. Wang, and J.-J. Wang, J. Appl. Phys. 126, 144303 (2019); https://doi.org/10.1063/1.5118738.
  12. R. Thakur, P. K. Ahluwalia, A. Kumar, and R. Sharma, Physica E 129, 114638 (2021); https://doi.org/10.1016/j.physe.2021.114638.
  13. Z. Zhou, L. Yan, X.-M. Wang, D. Zhang, and J.-Y. Yan, Results Phys. 35, 105351 (2022); https://doi.org/10.1016/j.rinp.2022.105351.
  14. F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 16, 34 (2016); https://doi.org/10.1021/acs.nanolett.5b02430.
  15. V. Porsev and R. Evarestov, Nanomaterials 13, 415 (2023); https://doi.org/10.3390/nano13030415.
  16. P. Sestak, J. Wu, J. He, J. Pokluda, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 18684 (2015); https://doi.org/10.1039/c5cp02043c.
  17. H. Zhan, Y. Zhang, C. Yang, G. Zhang, and Y. Gu, Carbon, 120, 258 (2017); https://doi.org/10.1016/j.carbon.2017.05.044.
  18. H. Zhan, G. Zhang, C. Yang, and Y. Gu, Nanoscale, 10, 18961 (2018); https://doi.org/10.1039/C8NR04882G.
  19. S. Norouzi and M. M. S. Fakhrabadi, Appl. Phys. A 125, 321 (2019); https://doi.org/10.1007/s00339-019-2623-8.
  20. C. Zhu, J. Ji, Z. Zhang, S. Dong, N. Wei, and J. Zhao, Mech. Mater. 153, 103683 (2021); https://doi.org/10.1016/j.mechmat.2020.103683.
  21. R. Liu, J. Zhao, L. Wang, and N. Wei, Nanotechnology 31, 025709 (2020); https://doi.org/10.1088/1361-6528/ab4760.
  22. A. Shari an, A. Moshfegh, A. Javadzadegan, H. H. Afrouzi, M. Baghani, and M. Baniassadi, Phys. Chem. Chem. Phys. 21, 12423 (2019); https://doi.org/10.1039/C9CP01361J.
  23. H. Li, H. H. Afrouzi, M. M. A. Zahra, B. S. Bashar, F. Fathdal, S. K. Hadrawi, A. Alizadeh, M. Hekmatifar, K. Al-Majdi, and I. Alhani, Colloids Surf. A: Physicochem. Eng. Asp. 656, 130324 (2023); https://doi.org/10.1016/j.colsurfa.2022.130324.
  24. H. Zhan, G. Zhang, C. Yang, and Y. T. Gu, Phys. Chem. C 122, 7605 (2018); https://doi.org/10.1021/acs.jpcc.8b00868.
  25. S. Norouzi and M. M. S. Fakhrabadi, J. Phys. Chem. Sol. 137, 109228 (2020); https://doi.org/10.1016/j.jpcs.2019.109228.
  26. A. Shari an, T. Karbaschi, A. Rajabpour, M. Baghani, J.Wu, and M. Baniassadi, Int. J. Heat Mass Transfer 189, 122719 (2022); https://doi.org/10.1016/j.ijheatmasstransfer.2022.122719.
  27. V. F. Nesterenko, Philos. Trans. Royal Soc. A 376, 2127 (2018); https://doi.org/10.1098/rsta.2017.0130
  28. P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys. Rev. E 56, 877 (1997); https://doi.org/10.1103/PhysRevE.56.877.
  29. Y. Zolotaryuk, A. V. Savin, and P. L. Christiansen, Phys. Rev. B 57, 14213 (1998); https://doi.org/10.1103/PhysRevB.57.14213.
  30. W. D. Cornell, W. P. Cieplak, C. I. Bayly, R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Amer. Chem. Soc. 117, 5179 (1995); https://doi.org/10.1021/ja00124a002.
  31. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010); https://doi.org/10.1103/PhysRevB.82.195422.
  32. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 98, 193106 (2011); https://doi.org/10.1063/1.3590256.
  33. A. V. Savin and Y. S. Kivshar, Phys. Rev. B 85, 125427 (2012); https://doi.org/10.1103/PhysRevB.85.125427.
  34. A. V. Savin and Y. S. Kivshar, Sci. Rep. 7, 4668 (2017); https://10.1038/s41598-017-04987-w.
  35. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112 (14), 6472 (2000); https://doi.org/10.1063/1.481208.
  36. R. Setton, Carbon 34(1), 69 (1996); https://doi.org/10.1016/0008-6223(95)00136-0.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##