Effekt Kholla v dopirovannom mott-khabbardovskom dielektrike

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present theoretical analysis of Hall effect in doped Mott–Hubbard insulator, considered as a prototype of cuprate superconductor. We consider the standard Hubbard model within DMFT approximation. As a typical case we consider the partially filled (hole doping) lower Hubbard band. We calculate the doping dependence of both the Hall coefficient and Hall number and determine the value of carrier concentration, where Hall effect changes its sign. We obtain a significant dependence of Hall effect parameters on temperature. Disorder effects are taken into account in a qualitative way. We also perform a comparison of our theoretical results with some known experiments on doping dependence of Hall number in the normal state of YBCO and Nd-LSCO, demonstrating rather satisfactory agreement of theory and experiment. Thus the doping dependence of Hall effect parameters obtained within Hubbard model can be considered as an alternative to a popular model of the quantum critical point.

About the authors

E. Z Kuchinskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: kuchinsk@iep.uran.ru
620016, Yekaterinburg, Russia

N. A Kuleeva

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: strigina@iep.uran.ru
620016, Yekaterinburg, Russia

M. V Sadovskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: sadovski@iep.uran.ru
620016, Yekaterinburg, Russia

D. I Khomskiy

II Physikalisches Institut, Universität zu Koeln

Author for correspondence.
Email: khomskii@ph2.uni-koeln.de
50937, Koeln, Germany

References

  1. Y. Iye, J.Phys.Chem. Solids 53, 1561 (1992).
  2. F. F. Balakirev, J.B. Betts, A. Migliori, I. Tsukada, Y. Ando, and G. S. Boebinger, Phys.Rev. Lett. 101, 017004 (2009).
  3. S. Badoux, W. Tabis, F. Laliberte, B. Vignolle, D. Vignolles, J. Beard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
  4. C. Collignon, S. Badoux, S.A.A. Afshar, B. Michon, F. Laliberte, O. Cyr-Choiniere, J.-S. Zhou, S. Licciardello, S. Wiedmann, N. Doiron-Leyraud, and L. Taillefer, Phys.Rev.B95, 224517 (2017).
  5. C. Proust and L. Taillefer, Annu.Rev.Condens. Matter Phys. 10 409 (2019).
  6. Th. Pruschke, M. Jarrell, and J.K. Freericks, Adv. Phys. 44, 187 (1995).
  7. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.Mod.Phys. 68, 13 (1996).
  8. D. Vollhardt in: Lectures on the Physics of Strongly Correlated Systems XIV, eds. A. Avella and F. Mancini, AIP Conference Proceed. vol. 1297, AIP, Melville, New York (2010), p. 339; ArXiV: 1004.5069.
  9. Э. З. Кучинский, И.А. Некрасов, М.В. Садовский, УФН 182, 345 (2012)
  10. Phys.Usp. 55, 325 (2010).
  11. G.Rohringer, H.Hafermann, A.Toschi, A.A. Katanin, A.E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A.N. Rubtsov, and K. Held. Rev.Mod. Phys. 90, 025003 (2018).
  12. Э. З. Кучинский, Н.А. Кулеева, Д.И. Хомский, М.В. Садовский, Письма ЖЭТФ 115, 444 (2022)
  13. JETP Lett. 115, 402 (2022).
  14. R. Bulla, T.A. Costi, and T. Pruschke, Rev.Mod. Phys. 60, 395 (2008).
  15. E. Z. Kuchinskii, I.A. Nekrasov, and M.V. Sadovskii, ЖЭТФ 133, 670 (2008)
  16. JETP 106, 581 (2008).
  17. D. I. Khomskii, Basic Aspects of the Quantum Theory of Solids, Cambridge University Press, NY (2010).
  18. M.V. Sadovskii, I.A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke, and V. I. Anisimov, Phys.Rev.B72, 155105 (2005).
  19. D. Pelc, P. Popˇcevi'c, M. Poˇzek, M. Greven, and N. Bariˇsi'c, Sci.Adv. 5, eaau4538 (2019).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies