Effekt Kholla v dopirovannom mott-khabbardovskom dielektrike

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present theoretical analysis of Hall effect in doped Mott–Hubbard insulator, considered as a prototype of cuprate superconductor. We consider the standard Hubbard model within DMFT approximation. As a typical case we consider the partially filled (hole doping) lower Hubbard band. We calculate the doping dependence of both the Hall coefficient and Hall number and determine the value of carrier concentration, where Hall effect changes its sign. We obtain a significant dependence of Hall effect parameters on temperature. Disorder effects are taken into account in a qualitative way. We also perform a comparison of our theoretical results with some known experiments on doping dependence of Hall number in the normal state of YBCO and Nd-LSCO, demonstrating rather satisfactory agreement of theory and experiment. Thus the doping dependence of Hall effect parameters obtained within Hubbard model can be considered as an alternative to a popular model of the quantum critical point.

作者简介

E. Kuchinskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: kuchinsk@iep.uran.ru
620016, Yekaterinburg, Russia

N. Kuleeva

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: strigina@iep.uran.ru
620016, Yekaterinburg, Russia

M. Sadovskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: sadovski@iep.uran.ru
620016, Yekaterinburg, Russia

D. Khomskiy

II Physikalisches Institut, Universität zu Koeln

编辑信件的主要联系方式.
Email: khomskii@ph2.uni-koeln.de
50937, Koeln, Germany

参考

  1. Y. Iye, J.Phys.Chem. Solids 53, 1561 (1992).
  2. F. F. Balakirev, J.B. Betts, A. Migliori, I. Tsukada, Y. Ando, and G. S. Boebinger, Phys.Rev. Lett. 101, 017004 (2009).
  3. S. Badoux, W. Tabis, F. Laliberte, B. Vignolle, D. Vignolles, J. Beard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
  4. C. Collignon, S. Badoux, S.A.A. Afshar, B. Michon, F. Laliberte, O. Cyr-Choiniere, J.-S. Zhou, S. Licciardello, S. Wiedmann, N. Doiron-Leyraud, and L. Taillefer, Phys.Rev.B95, 224517 (2017).
  5. C. Proust and L. Taillefer, Annu.Rev.Condens. Matter Phys. 10 409 (2019).
  6. Th. Pruschke, M. Jarrell, and J.K. Freericks, Adv. Phys. 44, 187 (1995).
  7. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.Mod.Phys. 68, 13 (1996).
  8. D. Vollhardt in: Lectures on the Physics of Strongly Correlated Systems XIV, eds. A. Avella and F. Mancini, AIP Conference Proceed. vol. 1297, AIP, Melville, New York (2010), p. 339; ArXiV: 1004.5069.
  9. Э. З. Кучинский, И.А. Некрасов, М.В. Садовский, УФН 182, 345 (2012)
  10. Phys.Usp. 55, 325 (2010).
  11. G.Rohringer, H.Hafermann, A.Toschi, A.A. Katanin, A.E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A.N. Rubtsov, and K. Held. Rev.Mod. Phys. 90, 025003 (2018).
  12. Э. З. Кучинский, Н.А. Кулеева, Д.И. Хомский, М.В. Садовский, Письма ЖЭТФ 115, 444 (2022)
  13. JETP Lett. 115, 402 (2022).
  14. R. Bulla, T.A. Costi, and T. Pruschke, Rev.Mod. Phys. 60, 395 (2008).
  15. E. Z. Kuchinskii, I.A. Nekrasov, and M.V. Sadovskii, ЖЭТФ 133, 670 (2008)
  16. JETP 106, 581 (2008).
  17. D. I. Khomskii, Basic Aspects of the Quantum Theory of Solids, Cambridge University Press, NY (2010).
  18. M.V. Sadovskii, I.A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke, and V. I. Anisimov, Phys.Rev.B72, 155105 (2005).
  19. D. Pelc, P. Popˇcevi'c, M. Poˇzek, M. Greven, and N. Bariˇsi'c, Sci.Adv. 5, eaau4538 (2019).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##