Synthesis and Study of Physicochemical Properties of Mesoporous Carbon Sorbent Modified with 3-Phenylpropane Acid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The adsorption of 3-phenylpropanoic acid on a mesoporous carbon sorbent was studied. The optimal ratio and equilibrium time in the sorbent–phenylpropanoic acid solution system were determined. A method for modifying a carbon sorbent with 3-phenylpropanoic acid has been developed. The possibility of migration (desorption) of the modifier into solutions simulating the environment of the stomach and intestines was investigated. The set of physicochemical research methods—low-temperature nitrogen adsorption, IR, NMR, X-ray photoelectron and Raman spectroscopy, spectrophotometry, the titrimetric method of H.P. Boehm, CHNOS elemental analysis—were used to study the properties of a carbon sorbent before and after modification, as well as after desorption of the deposited 3-phenylpropanoic acid. The synthesized modified samples are promising for use as enterosorbents for treating gastrointestinal diseases.

Sobre autores

A. Sedanova

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

L. Pyanova

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

M. Delyagina

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

N. Kornienko

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

N. Leontyeva

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

S. Nesov

Omsk State Technical University

Email: medugli@ihcp.ru
ul. Mira, 11, 644050, Omsk, Russia

A. Babenko

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: medugli@ihcp.ru
644040, Omsk–40, Russia

Bibliografia

  1. Koh A., Vadder F. De, Kovatcheva-Datchary P., Bäckhed F. // Cell. 2016. V. 165. P. 1332–1345.
  2. Kumar N., Goel N. // Biotechnol. Rep. 2019. V. 24. P. 00370–00380.
  3. Beloborodova N.V., Moroz V.V., Osipov A.A. et al. // Biochemistry (Moscow). 2015. V. 80. P. 374–378.
  4. Beloborodova N.V. // General Reanimatology. 2019. V. 15. № 6. P. 62–79.
  5. Martínez-Oca P., Robles-Vera I., Sánchez-Roncero A. et al. // J. Nutr. Biochem. 2020. V. 81. P. 108383–108399.
  6. Kirby T.O., Ochoa-Reparaz J., Roullet J-B., Gibson K.M. // Mol. Genet. Metab. 2021. V. 132. № 1. P. 1–10.
  7. Pautova A.K., Sobolev P.D., Revelsky A.I. // Clin. Mass. Spectrom. 2019. V. 14. P. 46–53.
  8. National Center for Biotechnology Information. “PubChem Compound Summary for CID 107, 3-Phenylpropionic acid” PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/3-Phenylpropionic-acid. Accessed 11 January, 2023.
  9. Cueva C., Moreno-Arribas M.V., Martín-Álvarez P.J. et al. // Res. Microbiol. 2010. V. 161. P. 372–382.
  10. Lee I., Han M., Kim D., Yun B. // Bioorg. Med. Chem. Lett. 2014. V. 24. P. 3503–3505.
  11. Gisbert-Garzarán M., Manzano M., Vallet-Regí M. // Bioeng. 2017. V. 4. P. 3–30.
  12. Devnarain N., Osman N., Fasiku V.O. et al. // Rev. Nanomed. Nanobiotechnol. 2021. V. 13. P. 1664–1702.
  13. Deirram N., Zhang C., Kermaniyan S.S. et al. // Macromol. Rapid Commun. 2019. V. 40. P. 1800917–1800940.
  14. Dong P., Rakesh K.P., Manukumar H.M. et al. // Bioorg. Chem. 2019. 85. P. 325–336.
  15. Miriyala N., Ouyang D., Perrie Y. et al. // Eur. J. Pharm. Biopharm. 2017. V. 115. P. 197–205.
  16. Yadavalli T., Ames J., Agelidis A. et al. // Sci. Adv. 2019. V. 5. P. 1–12.
  17. Mehra N.K., Palakurthi S. // Drug Discov. Today. 2016. V. 21. P. 585–597.
  18. Falank C., Tasset A. W., Farrell M. et al. // Nanomedicine. 2019. V.20. P. 102025–102037.
  19. Zhua S. // Aquac. 2019. V. 512. P. 734377–734386.
  20. Muthoosamy K., Bai R.G., Manickam S. // Curr. Drug Deliv. 2014. V. 11. P. 701–718.
  21. Campbell E., Hasan Md.T., Pho C. // Sci. Rep. 2019. V. 9. P. 416–425.
  22. Kumar M., Raza K. // Pharm. Nanotechnol. 2017. V. 5. P. 169–179.
  23. Grebinyk A., Prylutska S., Grebinyk S. // Nanoscale Res. Lett. 2019. V. 14. P. 61–71.
  24. Thambiliyagodage C., Mirihana S., Gunathilaka H. // Biomed. J. Sci. Tech. Res. 2019. V. 22. P. 16905–16907.
  25. Zhao Q., Lin Y., Han N. et al. // Drug Deliv. 2017. V. 24. P. 94–107.
  26. Maiti D., Tong X., Mou X., Yang K. // Front. Pharmacol. 2019. V. 9. P. 1–16.
  27. Guedidi H., Reinert L., Soneda Y. et al. // Arab. J. Chem. 2017. V. 10. P. 3584–3594.
  28. P’yanova L.G., Likholobov V.A., Sedanova A.V., Drozdetskaya M.S. // Russ. J. Gen. Chem. 2020. V.90. № 3. P. 550–558.
  29. Likholobov V.A., P’yanova L.G., Danilenko A.M. et al. // J. Fluor. Chem. 2019. V. 227. P. 109372–109383.
  30. Sedanova A.V., P’yanova L.G., Delyagina M.S. et al. // Chem. for Sust. Develop. 2022. V. 30. P. 543–552.
  31. Vezentsev A.I., Thuy D.M., Goldovskaya-Peristaya L.F., Glukhareva N.A. // Indones. J. Chem. 2018. V. 18. P. 733–741.
  32. Alaqarbeh M.M. // RHAZES: Green and Applied Chemistry. 2021. V. 13. P. 43–51.
  33. Giles C.H., MacEwan C.H., Nakhwa S.N., Smith D. // J. Chem. Soc. 1960. P. 3973–3993.
  34. Popov A.Yu., Blinnikova Z.K., Tsyurupa M.P., Davankov V.A. // Sorbtsionnye I Khromatograficheskie Protsessy. 2017. V. 17. № 2. P. 183–190.
  35. Eleftheriadis G.K., Filippousi M., Tsachouridou V. et al. // Int. J. Pharm. 2016. V. 515. P. 262–270.
  36. Xu C., Shi X., Ji A. et al. // PLoS ONE. 2015. V. 15. P. 1–15.
  37. Chen X., Wang X., Fang D. // Fuller. Nanotub. Car. N. 2020. V. 28. P. 1048–1058.
  38. Yamada Y., Sato S. // Carbon. 2015. V. 269. P. 181–189.
  39. Kovtun A., Jones D., Dell’Elce S. et al. // Carbon. 2019. V. 143. P. 268–275.
  40. Bobenko N.G., Bolotov V.V., Egorushkin V.E. et al. // Carbon. 2019. V. 153. P. 40–51.
  41. Sotoma S., Akagi K., Hosokawa S. et al. // RSC Adv. 2015. V. 5. P. 13818–13827.
  42. Zhang L., Tu L., Liang Y. et al. // RSC Adv. 2018. V. 8. P. 42280–42291.
  43. Ramenskaia G.V., Shokhin I.E., Savchenko A.Iu., Volkova E.A. // Biomed Khim. 2011. V. 57. № 5. P. 482–489.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (6KB)
3.

Baixar (42KB)
4.

Baixar (50KB)
5.

Baixar (152KB)
6.

Baixar (40KB)
7.

Baixar (45KB)
8.

Baixar (176KB)
9.

Baixar (126KB)
10.

Baixar (164KB)
11.

Baixar (114KB)
12.

Baixar (165KB)
13.

Baixar (57KB)

Declaração de direitos autorais © А.В. Седанова, Л.Г. Пьянова, М.С. Делягина, Н.В. Корниенко, Н.Н. Леонтьева, С.Н. Несов, А.В. Бабенко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies