Synthesis and Study of Physicochemical Properties of Mesoporous Carbon Sorbent Modified with 3-Phenylpropane Acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The adsorption of 3-phenylpropanoic acid on a mesoporous carbon sorbent was studied. The optimal ratio and equilibrium time in the sorbent–phenylpropanoic acid solution system were determined. A method for modifying a carbon sorbent with 3-phenylpropanoic acid has been developed. The possibility of migration (desorption) of the modifier into solutions simulating the environment of the stomach and intestines was investigated. The set of physicochemical research methods—low-temperature nitrogen adsorption, IR, NMR, X-ray photoelectron and Raman spectroscopy, spectrophotometry, the titrimetric method of H.P. Boehm, CHNOS elemental analysis—were used to study the properties of a carbon sorbent before and after modification, as well as after desorption of the deposited 3-phenylpropanoic acid. The synthesized modified samples are promising for use as enterosorbents for treating gastrointestinal diseases.

About the authors

A. V. Sedanova

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

L. G. Pyanova

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

M. S. Delyagina

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

N. V. Kornienko

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

N. N. Leontyeva

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: medugli@ihcp.ru
644040, Omsk–40, Russia

S. N. Nesov

Omsk State Technical University

Email: medugli@ihcp.ru
ul. Mira, 11, 644050, Omsk, Russia

A. V. Babenko

Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: medugli@ihcp.ru
644040, Omsk–40, Russia

References

  1. Koh A., Vadder F. De, Kovatcheva-Datchary P., Bäckhed F. // Cell. 2016. V. 165. P. 1332–1345.
  2. Kumar N., Goel N. // Biotechnol. Rep. 2019. V. 24. P. 00370–00380.
  3. Beloborodova N.V., Moroz V.V., Osipov A.A. et al. // Biochemistry (Moscow). 2015. V. 80. P. 374–378.
  4. Beloborodova N.V. // General Reanimatology. 2019. V. 15. № 6. P. 62–79.
  5. Martínez-Oca P., Robles-Vera I., Sánchez-Roncero A. et al. // J. Nutr. Biochem. 2020. V. 81. P. 108383–108399.
  6. Kirby T.O., Ochoa-Reparaz J., Roullet J-B., Gibson K.M. // Mol. Genet. Metab. 2021. V. 132. № 1. P. 1–10.
  7. Pautova A.K., Sobolev P.D., Revelsky A.I. // Clin. Mass. Spectrom. 2019. V. 14. P. 46–53.
  8. National Center for Biotechnology Information. “PubChem Compound Summary for CID 107, 3-Phenylpropionic acid” PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/3-Phenylpropionic-acid. Accessed 11 January, 2023.
  9. Cueva C., Moreno-Arribas M.V., Martín-Álvarez P.J. et al. // Res. Microbiol. 2010. V. 161. P. 372–382.
  10. Lee I., Han M., Kim D., Yun B. // Bioorg. Med. Chem. Lett. 2014. V. 24. P. 3503–3505.
  11. Gisbert-Garzarán M., Manzano M., Vallet-Regí M. // Bioeng. 2017. V. 4. P. 3–30.
  12. Devnarain N., Osman N., Fasiku V.O. et al. // Rev. Nanomed. Nanobiotechnol. 2021. V. 13. P. 1664–1702.
  13. Deirram N., Zhang C., Kermaniyan S.S. et al. // Macromol. Rapid Commun. 2019. V. 40. P. 1800917–1800940.
  14. Dong P., Rakesh K.P., Manukumar H.M. et al. // Bioorg. Chem. 2019. 85. P. 325–336.
  15. Miriyala N., Ouyang D., Perrie Y. et al. // Eur. J. Pharm. Biopharm. 2017. V. 115. P. 197–205.
  16. Yadavalli T., Ames J., Agelidis A. et al. // Sci. Adv. 2019. V. 5. P. 1–12.
  17. Mehra N.K., Palakurthi S. // Drug Discov. Today. 2016. V. 21. P. 585–597.
  18. Falank C., Tasset A. W., Farrell M. et al. // Nanomedicine. 2019. V.20. P. 102025–102037.
  19. Zhua S. // Aquac. 2019. V. 512. P. 734377–734386.
  20. Muthoosamy K., Bai R.G., Manickam S. // Curr. Drug Deliv. 2014. V. 11. P. 701–718.
  21. Campbell E., Hasan Md.T., Pho C. // Sci. Rep. 2019. V. 9. P. 416–425.
  22. Kumar M., Raza K. // Pharm. Nanotechnol. 2017. V. 5. P. 169–179.
  23. Grebinyk A., Prylutska S., Grebinyk S. // Nanoscale Res. Lett. 2019. V. 14. P. 61–71.
  24. Thambiliyagodage C., Mirihana S., Gunathilaka H. // Biomed. J. Sci. Tech. Res. 2019. V. 22. P. 16905–16907.
  25. Zhao Q., Lin Y., Han N. et al. // Drug Deliv. 2017. V. 24. P. 94–107.
  26. Maiti D., Tong X., Mou X., Yang K. // Front. Pharmacol. 2019. V. 9. P. 1–16.
  27. Guedidi H., Reinert L., Soneda Y. et al. // Arab. J. Chem. 2017. V. 10. P. 3584–3594.
  28. P’yanova L.G., Likholobov V.A., Sedanova A.V., Drozdetskaya M.S. // Russ. J. Gen. Chem. 2020. V.90. № 3. P. 550–558.
  29. Likholobov V.A., P’yanova L.G., Danilenko A.M. et al. // J. Fluor. Chem. 2019. V. 227. P. 109372–109383.
  30. Sedanova A.V., P’yanova L.G., Delyagina M.S. et al. // Chem. for Sust. Develop. 2022. V. 30. P. 543–552.
  31. Vezentsev A.I., Thuy D.M., Goldovskaya-Peristaya L.F., Glukhareva N.A. // Indones. J. Chem. 2018. V. 18. P. 733–741.
  32. Alaqarbeh M.M. // RHAZES: Green and Applied Chemistry. 2021. V. 13. P. 43–51.
  33. Giles C.H., MacEwan C.H., Nakhwa S.N., Smith D. // J. Chem. Soc. 1960. P. 3973–3993.
  34. Popov A.Yu., Blinnikova Z.K., Tsyurupa M.P., Davankov V.A. // Sorbtsionnye I Khromatograficheskie Protsessy. 2017. V. 17. № 2. P. 183–190.
  35. Eleftheriadis G.K., Filippousi M., Tsachouridou V. et al. // Int. J. Pharm. 2016. V. 515. P. 262–270.
  36. Xu C., Shi X., Ji A. et al. // PLoS ONE. 2015. V. 15. P. 1–15.
  37. Chen X., Wang X., Fang D. // Fuller. Nanotub. Car. N. 2020. V. 28. P. 1048–1058.
  38. Yamada Y., Sato S. // Carbon. 2015. V. 269. P. 181–189.
  39. Kovtun A., Jones D., Dell’Elce S. et al. // Carbon. 2019. V. 143. P. 268–275.
  40. Bobenko N.G., Bolotov V.V., Egorushkin V.E. et al. // Carbon. 2019. V. 153. P. 40–51.
  41. Sotoma S., Akagi K., Hosokawa S. et al. // RSC Adv. 2015. V. 5. P. 13818–13827.
  42. Zhang L., Tu L., Liang Y. et al. // RSC Adv. 2018. V. 8. P. 42280–42291.
  43. Ramenskaia G.V., Shokhin I.E., Savchenko A.Iu., Volkova E.A. // Biomed Khim. 2011. V. 57. № 5. P. 482–489.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (6KB)
3.

Download (42KB)
4.

Download (50KB)
5.

Download (152KB)
6.

Download (40KB)
7.

Download (45KB)
8.

Download (176KB)
9.

Download (126KB)
10.

Download (164KB)
11.

Download (114KB)
12.

Download (165KB)
13.

Download (57KB)

Copyright (c) 2023 А.В. Седанова, Л.Г. Пьянова, М.С. Делягина, Н.В. Корниенко, Н.Н. Леонтьева, С.Н. Несов, А.В. Бабенко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies