Fayans Functional. Constraints from Equations of State

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A variational analysis of the Fayans energy-density functional is performed with allowance for the earlier unused isovector parameters @ in the volume part of the functional. The quality of the previous fit to nuclear densities, masses of nuclei, single-particle levels, and charge radii remains unchanged under the additional condition of description of the giant-dipole-resonance energy in the @Pb nucleus. The effect of variations in the isovector parameter @ on the equations of state for infinite symmetric nuclear matter and pure neutron matter is determined. The density dependence of the symmetry energy @ and of its derivative @ is studied. For the parameter @, a range is established that is consistent with the estimated values of the symmetry energy @ and its derivative @ at the equilibrium density @, which are parameters of the equation of state for symmetric nuclear matter. These values were obtained earlier from a simultaneous analysis of the values of the ‘‘neutron skin’’ @ of @Pb and @Ca nuclei from the PREX-II and CREX experiments, from the results of ab initio calculations of equations of state and ground-state properties of nuclei, and from astrophysical observations and data on the discovery of gravitational waves from the merger of binary neutron stars by the LIGO-Virgo Collaboration in 2017.

About the authors

I. N. Borzov

National Research Centre Kurchatov Institute; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna

Email: Borzov_IN@nrcki.ru
Moscow, Russia; Moscow oblast, Russia

S. V. Tolokonnikov

National Research Centre Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: Tolokonnikov_SV@nrcki.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

References

  1. В. Е. Фортов, Уравнения состояния вещества. От идеального газа до кварк-глюонной плазмы (Физматлит, Москва, 2013).
  2. C. Drischler, J. W. Holt, and C. Wellenhofer, Annu. Rev. Nucl. Part. Sci. 71, 403 (2021).
  3. D. Testov, D. Verney, B. Roussire, J. Bettane, F. Didierjean, K. Flanagan, S. Franchoo, F. Ibra- him, E. Kuznetsova, R. Li, B. Marsh, I. Matea, Yu. Penionzhkevich, H. Pai, V. Smirnov, E. Sokol, et al., Nucl. Instrum. Methods A 815, 96 (2016).
  4. J. Estee et al. (SRIT Collab.), Phys. Rev. Lett. 126, 162701 (2021).
  5. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).
  6. D. Adhikari et al. (PREX-II Collab.), Phys. Rev. Lett. 126, 172502 (2021).
  7. D. Adhikari et al. (CREX Collab.), Phys. Rev. Lett. 129, 042501 (2022).
  8. J. M. Lattimer, Nuclear Matter Symmetry Energy From Experiment, Theory and Observation, in Workshop at INT S@INT Seminar, Seattle, November 9, 2021.
  9. P.-G. Reinhard, Roca-Maza, and W. Nazarewicz, Phys. Rev. Lett. 127, 232501 (2022); 129, 232501 (2022).
  10. R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev. Lett. 127, 192701 (2021).
  11. R. Essick, P. Landry, A. Schwenk, and I. Tews, Phys. Rev. 104, 065804 (2021).
  12. http://cdfe.sinp.vsu.ru

Copyright (c) 2023 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies