Weight systems and invariants of graphs and embedded graphs
- 作者: Kazarian M.E.1,2, Lando S.K.1,2
-
隶属关系:
- HSE University
- Skolkovo Institute of Science and Technology
- 期: 卷 77, 编号 5 (2022)
- 页面: 131-184
- 栏目: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133715
- DOI: https://doi.org/10.4213/rm10054
- ID: 133715
如何引用文章
详细
作者简介
Maxim Kazarian
HSE University; Skolkovo Institute of Science and Technology
Email: kazarian@mccme.ru
Doctor of physico-mathematical sciences, no status
Sergei Lando
HSE University; Skolkovo Institute of Science and Technology
Email: lando@mccme.ru
Doctor of physico-mathematical sciences
参考
- N. H. Abel, “Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist”, J. Reine Angew. Math., 1826:1 (1826), 159–160
- M. Aguiar, N. Bergeron, F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142:1 (2006), 1–30
- M. Aguiar, S. Mahajan, “Hopf monoids in the category of species”, Hopf algebras and tensor categories, Contemp. Math., 585, Amer. Math. Soc., Providence, RI, 2013, 17–124
- R. Arratia, B. Bollobas, G. B. Sorkin, “A two-variable interlace polynomial”, Combinatorica, 24:4 (2004), 567–584
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- D. Bar-Natan, H. T. Vo, “Proof of a conjecture of Kulakova et al. related to the $mathfrak{sl}_2$ weight system”, European J. Combin., 45 (2015), 65–70
- A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
- B. Bollobas, O. Riordan, “A polynomial of graphs on surfaces”, Math. Ann., 323:1 (2002), 81–96
- A. Bouchet, “Maps and $Delta$-matroids”, Discrete Math., 78:1-2 (1989), 59–71
- A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144
- A. Bouchet, A. Duchamp, “Representability of $Delta$-matroids over $mathbf{GF}(2)$”, Linear Algebra Appl., 146 (1991), 67–78
- R. Brijder, H. J. Hoogeboom, “Interlace polynomials for multimatroids and delta-matroids”, European J. Combin., 40 (2014), 142–167
- В. М. Бухштабер, Н. Ю. Ероховец, “Многогранники, числа Фибоначчи, алгебры Хопфа и квазисимметрические функции”, УМН, 66:2(398) (2011), 67–162
- Б. С. Бычков, А. В. Михайлов, “Полиномиальные инварианты графов и иерархии линейных уравнений”, УМН, 74:2(446) (2019), 189–190
- S. Chmutov, “Generalized duality for graphs on surfaces and the signed Bollobas–Riordan polynomial”, J. Combin. Theory Ser. B, 99:3 (2009), 617–638
- S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants. III. Forest algebra and weighted graphs”, Singularities and bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 135–145
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
- S. Chmutov, M. Kazarian, S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp.
- S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
- S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36:1 (1997), 153–178
- C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, “On the interplay between embedded graphs and delta-matroids”, Proc. Lond. Math. Soc. (3), 118:3 (2019), 675–700
- C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, “Matroids, delta-matroids and embedded graphs”, J. Combin. Theory Ser. A, 167 (2019), 7–59
- O. T. Dasbach, D. Futer, E. Kalfagianni, Xiao-Song Lin, N. Stoltzfus, “Alternating sum formulae for the determinant and other link invariants”, J. Knot Theory Ramifications, 19:6 (2010), 765–782
- R. Dogra, S. Lando, Skew characteristic polynomial of graphs and embedded graphs, 2022, 26 pp.
- A. Dunaykin, V. Zhukov, “Transition polynomial as a weight system for binary delta-matroids”, Mosc. Math. J., 22:1 (2022), 69–81
- С. В. Дужин, М. В. Карев, “Определение ориентации струнных зацеплений при помощи инвариантов конечного типа”, Функц. анализ и его прил., 41:3 (2007), 48–59
- J. A. Ellis-Monaghan, I. Moffatt, Graphs on surfaces. Dualities, polynomials, and knots, SpringerBriefs Math., Springer, New York, 2013, xii+139 pp.
- J. A. Ellis-Monaghan, I. Moffatt, “The Las Vergnas polynomial for embedded graphs”, European J. Combin., 50 (2015), 97–114
- J. M. Figueroa-O'Farrill, T. Kimura, A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra $gl(1|1)$”, Comm. Math. Phys., 185:1 (1997), 93–127
- П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
- П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
- S. Heil, C. Ji, “On an algorithm for comparing the chromatic symmetric functions of trees”, Australas. J. Combin., 75:2 (2019), 210–222
- J. Huh, “Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs”, J. Amer. Math. Soc., 25:3 (2012), 907–927
- F. Jaeger, “On transition polynomial for $4$-regular graphs”, Cycles and rays (Montreal, PQ, 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 301, Kluwer Acad. Publ., Dordrecht, 1990, 123–150
- S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
- Б. Б. Кадомцев, В. И. Петвиашвили, “Об устойчивости уединeнных волн в слабо диспергирующих средах”, Докл. АН СССР, 192:4 (1970), 753–756
- М. Э. Казарян, С. К. Ландо, “Комбинаторные решения интегрируемых иерархий”, УМН, 70:3(423) (2015), 77–106
- N. Kodaneva, The interlace polynomial of binary delta-matroids and link invariants, 2020, 17 pp.
- M. Kontsevich, “Vassiliev knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- E. Krasilnikov, “An extension of the $mathfrak{sl}_2$ weight system to graphs with $nle 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618
- E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, “On a weight system conjecturally related to $mathfrak{sl}_2$”, European J. Combin., 41 (2014), 266–277
- S. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
- S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
- С. К. Ландо, “$J$-инварианты орнаментов и оснащенные хордовые диаграммы”, Функц. анализ и его прил., 40:1 (2006), 1–13
- S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755
- А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
- J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
- I. Moffatt, E. Mphako-Banda, “Handle slides for delta-matroids”, European J. Combin., 59 (2017), 23–33
- A. Morse, “The interlace polynomial”, Graph polynomials, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2017, 1–23
- M. Nenasheva, V. Zhukov, “An extension of Stanley's chromatic symmetric function to binary delta-matroids”, Discrete Math., 344:11 (2021), 112549, 10 pp.
- N. Netrusova, The interlace polynomial and knot invariants, preprint, 2011
- S. D. Noble, D. J. A. Welsh, “A weighted graph polynomial from chromatic invariants of knots”, Ann. Inst. Fourier (Grenoble), 49:3 (1999), 1057–1087
- А. Окуньков, Г. Ольшанский, “Сдвинутые функции Шура”, Алгебра и анализ, 9:2 (1997), 73–146
- G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66
- S. M. Roman, G.-C. Rota, “The umbral calculus”, Adv. Math., 27:2 (1978), 95–188
- G.-C. Rota, Jianhong Shen, B. D. Taylor, “All polynomials of binomial type are represented by Abel polynomials”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1997), 731–738
- W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
- W. R. Schmitt, “Hopf algebra methods in graph theory”, J. Pure Appl. Algebra, 101:1 (1995), 77–90
- E. Soboleva, “Vassiliev knot invariants coming from Lie algebras and $4$-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169
- R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph”, Adv. Math., 111:1 (1995), 166–194
- V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
- Zhuoke Yang, On values of $mathfrak{sl}_3$ weight system on chord diagrams whose intersection graph is complete bipartite, 2021, 17 pp.
- Zhuoke Yang, New approaches to $mathfrak{gl}(N)$ weight system, 2022, 18 pp.
- Zhuoke Yang, On the Lie superalgebra $mathfrak{gl}(m|n)$ weight system, 2022, 16 pp.
- П. Закорко, “Значения $mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечения” (в печати)
补充文件
