Weight systems and invariants of graphs and embedded graphs
- Authors: Kazarian M.E.1,2, Lando S.K.1,2
-
Affiliations:
- HSE University
- Skolkovo Institute of Science and Technology
- Issue: Vol 77, No 5 (2022)
- Pages: 131-184
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133715
- DOI: https://doi.org/10.4213/rm10054
- ID: 133715
Cite item
Abstract
The recent progress in the theory of weight systems, which are functions on the chord diagrams satisfying the so-called 4-relations, is described. Most attention is given to methods for constructing concrete weight systems. The two main sources of the constructions discussed are invariants of the intersection graphs of chord diagrams that satisfy the 4-term relations for graphs, and metrized Lie algebras.In the simplest non-trivial case of the metrized Lie algebra the recent results on the explicit form of the generating functions of the values of a weight system on important series of chord diagrams are presented. The computations are based on the Chmutov–Varchenko recurrence relations. Another recent result presented is the construction of recurrence relations for the values of the -weight system. These relations are based on Kazarian's idea of extending the -weight system to arbitrary permutations.In a number of recent papers an approach to the extension of weight systems and graph invariants to arbitrary embedded graphs was proposed, which is based on an analysis of the structure of the relevant Hopf algebras. The main principles of this approach are described. Weight systems defined on embedded graphs correspond to finite-order invariants of links ('knots' with several components).Bibliography: 65 titles.
About the authors
Maxim Eduardovich Kazarian
HSE University; Skolkovo Institute of Science and Technology
Email: kazarian@mccme.ru
Doctor of physico-mathematical sciences, no status
Sergei Konstantinovich Lando
HSE University; Skolkovo Institute of Science and Technology
Email: lando@mccme.ru
Doctor of physico-mathematical sciences
References
- N. H. Abel, “Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist”, J. Reine Angew. Math., 1826:1 (1826), 159–160
- M. Aguiar, N. Bergeron, F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142:1 (2006), 1–30
- M. Aguiar, S. Mahajan, “Hopf monoids in the category of species”, Hopf algebras and tensor categories, Contemp. Math., 585, Amer. Math. Soc., Providence, RI, 2013, 17–124
- R. Arratia, B. Bollobas, G. B. Sorkin, “A two-variable interlace polynomial”, Combinatorica, 24:4 (2004), 567–584
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- D. Bar-Natan, H. T. Vo, “Proof of a conjecture of Kulakova et al. related to the
weight system”, European J. Combin., 45 (2015), 65–70 - A. Bigeni, “A generalization of the Kreweras triangle through the universal
weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326 - B. Bollobas, O. Riordan, “A polynomial of graphs on surfaces”, Math. Ann., 323:1 (2002), 81–96
- A. Bouchet, “Maps and
-matroids”, Discrete Math., 78:1-2 (1989), 59–71 - A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144
- A. Bouchet, A. Duchamp, “Representability of
-matroids over ”, Linear Algebra Appl., 146 (1991), 67–78 - R. Brijder, H. J. Hoogeboom, “Interlace polynomials for multimatroids and delta-matroids”, European J. Combin., 40 (2014), 142–167
- В. М. Бухштабер, Н. Ю. Ероховец, “Многогранники, числа Фибоначчи, алгебры Хопфа и квазисимметрические функции”, УМН, 66:2(398) (2011), 67–162
- Б. С. Бычков, А. В. Михайлов, “Полиномиальные инварианты графов и иерархии линейных уравнений”, УМН, 74:2(446) (2019), 189–190
- S. Chmutov, “Generalized duality for graphs on surfaces and the signed Bollobas–Riordan polynomial”, J. Combin. Theory Ser. B, 99:3 (2009), 617–638
- S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants. III. Forest algebra and weighted graphs”, Singularities and bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 135–145
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
- S. Chmutov, M. Kazarian, S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp.
- S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
- S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from
”, Topology, 36:1 (1997), 153–178 - C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, “On the interplay between embedded graphs and delta-matroids”, Proc. Lond. Math. Soc. (3), 118:3 (2019), 675–700
- C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, “Matroids, delta-matroids and embedded graphs”, J. Combin. Theory Ser. A, 167 (2019), 7–59
- O. T. Dasbach, D. Futer, E. Kalfagianni, Xiao-Song Lin, N. Stoltzfus, “Alternating sum formulae for the determinant and other link invariants”, J. Knot Theory Ramifications, 19:6 (2010), 765–782
- R. Dogra, S. Lando, Skew characteristic polynomial of graphs and embedded graphs, 2022, 26 pp.
- A. Dunaykin, V. Zhukov, “Transition polynomial as a weight system for binary delta-matroids”, Mosc. Math. J., 22:1 (2022), 69–81
- С. В. Дужин, М. В. Карев, “Определение ориентации струнных зацеплений при помощи инвариантов конечного типа”, Функц. анализ и его прил., 41:3 (2007), 48–59
- J. A. Ellis-Monaghan, I. Moffatt, Graphs on surfaces. Dualities, polynomials, and knots, SpringerBriefs Math., Springer, New York, 2013, xii+139 pp.
- J. A. Ellis-Monaghan, I. Moffatt, “The Las Vergnas polynomial for embedded graphs”, European J. Combin., 50 (2015), 97–114
- J. M. Figueroa-O'Farrill, T. Kimura, A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra
”, Comm. Math. Phys., 185:1 (1997), 93–127 - П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли
, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93 - П. А. Филиппова, “Значения
-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148 - S. Heil, C. Ji, “On an algorithm for comparing the chromatic symmetric functions of trees”, Australas. J. Combin., 75:2 (2019), 210–222
- J. Huh, “Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs”, J. Amer. Math. Soc., 25:3 (2012), 907–927
- F. Jaeger, “On transition polynomial for
-regular graphs”, Cycles and rays (Montreal, PQ, 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 301, Kluwer Acad. Publ., Dordrecht, 1990, 123–150 - S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
- Б. Б. Кадомцев, В. И. Петвиашвили, “Об устойчивости уединeнных волн в слабо диспергирующих средах”, Докл. АН СССР, 192:4 (1970), 753–756
- М. Э. Казарян, С. К. Ландо, “Комбинаторные решения интегрируемых иерархий”, УМН, 70:3(423) (2015), 77–106
- N. Kodaneva, The interlace polynomial of binary delta-matroids and link invariants, 2020, 17 pp.
- M. Kontsevich, “Vassiliev knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- E. Krasilnikov, “An extension of the
weight system to graphs with vertices”, Arnold Math. J., 7:4 (2021), 609–618 - E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, “On a weight system conjecturally related to
”, European J. Combin., 41 (2014), 266–277 - S. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
- S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
- С. К. Ландо, “
-инварианты орнаментов и оснащенные хордовые диаграммы”, Функц. анализ и его прил., 40:1 (2006), 1–13 - S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755
- А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
- J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
- I. Moffatt, E. Mphako-Banda, “Handle slides for delta-matroids”, European J. Combin., 59 (2017), 23–33
- A. Morse, “The interlace polynomial”, Graph polynomials, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2017, 1–23
- M. Nenasheva, V. Zhukov, “An extension of Stanley's chromatic symmetric function to binary delta-matroids”, Discrete Math., 344:11 (2021), 112549, 10 pp.
- N. Netrusova, The interlace polynomial and knot invariants, preprint, 2011
- S. D. Noble, D. J. A. Welsh, “A weighted graph polynomial from chromatic invariants of knots”, Ann. Inst. Fourier (Grenoble), 49:3 (1999), 1057–1087
- А. Окуньков, Г. Ольшанский, “Сдвинутые функции Шура”, Алгебра и анализ, 9:2 (1997), 73–146
- G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66
- S. M. Roman, G.-C. Rota, “The umbral calculus”, Adv. Math., 27:2 (1978), 95–188
- G.-C. Rota, Jianhong Shen, B. D. Taylor, “All polynomials of binomial type are represented by Abel polynomials”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1997), 731–738
- W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
- W. R. Schmitt, “Hopf algebra methods in graph theory”, J. Pure Appl. Algebra, 101:1 (1995), 77–90
- E. Soboleva, “Vassiliev knot invariants coming from Lie algebras and
-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169 - R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph”, Adv. Math., 111:1 (1995), 166–194
- V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
- Zhuoke Yang, On values of
weight system on chord diagrams whose intersection graph is complete bipartite, 2021, 17 pp. - Zhuoke Yang, New approaches to
weight system, 2022, 18 pp. - Zhuoke Yang, On the Lie superalgebra
weight system, 2022, 16 pp. - П. Закорко, “Значения
-весовой системы на хордовых диаграммах с полным графом пересечения” (в печати)
Supplementary files
