Hitchin systems: some recent advances
- Авторлар: Sheinman O.K.1, Wang B.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 79, № 4 (2024)
- Беттер: 131-168
- Бөлім: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/261178
- DOI: https://doi.org/10.4213/rm10163
- ID: 261178
Дәйексөз келтіру
Аннотация
Авторлар туралы
Oleg Sheinman
Steklov Mathematical Institute of Russian Academy of Sciences
Email: sheinman@mi-ras.ru
Scopus Author ID: 6603235446
ResearcherId: Q-4145-2016
Doctor of physico-mathematical sciences, no status
Bin Wang
Steklov Mathematical Institute of Russian Academy of Sciences
Әдебиет тізімі
- В. И. Арнольд, Математические методы классической механики, Наука, М., 1974, 431 с.
- M. F. Atiyah, R. Bott, “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308:1505 (1983), 523–615
- O. Babelon, M. Talon, Riemann surfaces, separation of variables and classical and quantum integrability, 2002, 10 pp.
- D. Baraglia, M. Kamgarpour, “On the image of the parabolic Hitchin map”, Q. J. Math., 69:2 (2018), 681–708
- A. Beauville, M. S. Narasimhan, S. Ramanan, “Spectral curves and the generalised theta divisor”, J. Reine Angew. Math., 1989:398 (1989), 169–179
- I. Biswas, S. Ramanan, “An infinitesimal study of the moduli of Hitchin pairs”, J. Lond. Math. Soc. (2), 49:2 (1994), 219–331
- П. И. Борисова, О. К. Шейнман, “Системы Хитчина на гиперэллиптических кривых”, Труды МИАН, 311, Анализ и математическая физика (2020), 27–40
- M. A. de Cataldo, D. Maulik, Junliang Shen, “Hitchin fibrations, abelian surfaces, and the $P=W$ conjecture”, J. Amer. Math. Soc., 35:3 (2022), 911–953
- M. A. de Cataldo, D. Maulik, Junliang Shen, “On the $P=W$ conjecture for $operatorname{SL}_n$”, Selecta Math. (N. S.), 28:5 (2022), 90, 21 pp.
- R. Donagi, T. Pantev, “Geometric Langlands and non-abelian Hodge theory”, Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2009, 85–116
- R. Donagi, T. Pantev, “Langlands duality for Hitchin systems”, Invent. Math., 189:3 (2012), 653–735
- Б. А. Дубровин, “Тэта-функции и нелинейные уравнения”, УМН, 36:2(218) (1981), 11–80
- K. Gawȩdzki, P. Tran-Ngoc-Bich, “Hitchin systems at low genera”, J. Math. Phys., 41:7 (2000), 4695–4712
- B. van Geemen, A. J. de Jong, “On Hitchin's connection”, J. Amer. Math. Soc., 11:1 (1998), 189–228
- B. van Geemen, E. Previato, “On the Hitchin system”, Duke Math. J., 85:3 (1996), 659–683
- A. Gorsky, N. Nekrasov, V. Rubtsov, “Hilbert schemes, separated variables, and D-branes”, Comm. Math. Phys., 222:2 (2001), 299–318
- P. B. Gothen, A. G. Oliveira, “Topological mirror symmetry for parabolic Higgs bundles”, J. Geom. Phys., 137 (2019), 7–34
- M. Groechenig, D. Wyss, P. Ziegler, “Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration”, Invent. Math., 221:2 (2020), 505–596
- В. Гийемин, С. Стернберг, Геометрические асимптотики, Мир, М., 1981, 504 с.
- S. Gukov, E. Witten, “Gauge theory, ramification, and the geometric Langlands program”, Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, 35–180
- S. Gukov, E. Witten, “Rigid surface operators”, Adv. Theor. Math. Phys., 14:1 (2010), 87–178
- J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp.
- D. Friedan, S. Shenker, “The analytic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281:3-4 (1987), 509–545
- T. Hausel, A. Mellit, A. Minets, O. Schiffmann, $P=W$ via $H_2$, 2022, 54 pp.
- T. Hausel, M. Thaddeus, “Mirror symmetry, Langlands duality, and the Hitchin system”, Invent. Math., 153:1 (2003), 197–229
- N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114
- N. J. Hitchin, “Flat connections and geometric quantization”, Comm. Math. Phys., 131:2 (1990), 347–380
- J. C. Hurtubise, “Integrable systems and algebraic surfaces”, Duke. Math. J., 83:1 (1996), 19–50
- A. Kapustin, E. Witten, “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys., 1:1 (2007), 1–236
- M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), v. 1, Birkhäuser Verlag, Basel, 1995, 120–139
- И. М. Кричевер, “Методы алгебраической геометрии в теории нелинейных уравнений”, УМН, 32:6(198) (1977), 183–208
- И. М. Кричевер, “Интегрирование нелинейных уравнений методами алгебраической геометрии”, Функц. анализ и его прил., 11:1 (1977), 15–31
- И. М. Кричевер, “Нелинейные уравнения и эллиптические кривые”, Итоги науки и техн. Сер. Соврем. пробл. мат., 23, ВИНИТИ, М., 1983, 79–136
- I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269
- M. Logares, J. Martens, “Moduli of parabolic Higgs bundles and Atiyah algebroids”, J. Reine Angew. Math., 2010:649 (2010), 89–116
- D. Maulik, Junliang Shen, “Endoscopic decompositions and the Hausel–Thaddeus conjecture”, Forum Math. Pi, 9 (2021), e8, 49 pp.
- D. Maulik, Junliang Shen, The $P=W$ conjecture for $operatorname{GL}_n$, 2022, 23 pp.
- V. B. Mehta, C. S. Seshadri, “Moduli of vector bundles on curves with parabolic structures”, Math. Ann., 248:3 (1980), 205–239
- A. Mellit, “Poincare polynomials of character varieties, Macdonald polynomials and affine Springer fibers”, Ann. of Math. (2), 192:1 (2020), 165–228
- M. S. Narasimhan, S. Ramanan, “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math. (2), 89 (1969), 14–51
- M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567
- M. Oka, “Introduction to plane curve singularities. Toric resolution tower and Puiseux pairs”, Arrangements, local systems and singularities, Progr. Math., 283, Birkhäuser Verlag, Basel, 2010, 209–245
- P. Scheinost, M. Schottenloher, “Metaplectic quantization of the moduli spaces of flat and parabolic bundles”, J. Reine Angew. Math., 1995:466 (1995), 145–219
- О. К. Шейнман, “Алгебры операторов Лакса и интегрируемые иерархии”, Геометрия, топология и математическая физика. I, Сборник статей. К 70-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 263, МАИК “Наука/Интерпериодика”, М., 2008, 216–226
- O. K. Sheinman, Current algebras on Riemann surfaces. New results and applications, De Gruyter Exp. Math., 58, Walter de Gruyter GmbH & Co. KG, Berlin, 2012, xiv+150 pp.
- О. К. Шейнман, “Интегрируемые системы алгебраического происхождения и разделение переменных”, Функц. анализ и его прил., 52:4 (2018), 94–98
- О. К. Шейнман, “Спектральные кривые гиперэллиптических систем Хитчина”, Функц. анализ и его прил., 53:4 (2019), 63–78
- Shiyu Shen, “Mirror symmetry for parabolic Higgs bundles via $p$-adic integration”, Adv. Math., 443 (2024), 109616, 40 pp.
- C. T. Simpson, “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3:3 (1990), 713–770
- Xiaoyu Su, Bin Wang, Xueqing Wen, “Parabolic Hitchin maps and their generic fibers”, Math. Z., 301:1 (2022), 343–372
- Xiaoyu Su, Bin Wang, Xueqing Wen, Topological mirror symmetry of parabolic Hitchin systems, 2022, 17 pp.
- D. Talalaev, Riemann bilinear form and Poisson structure in Hitchin-type systems, 2003, 15 pp.
- А. Н. Тюрин, “Классификация векторных расслоений над алгебраической кривой произвольного рода”, Изв. АН СССР. Сер. матем., 29:3 (1965), 657–688
- А. Н. Тюрин, “О классификации $n$-мерных векторных расслоений над алгебраической кривой произвольного рода”, Изв. АН СССР. Сер. матем., 30:6 (1966), 1353–1366
- K. Yokogawa, “Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves”, J. Math. Kyoto Univ., 33:2 (1993), 451–504
Қосымша файлдар
