Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 80, Nº 5 (2025)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Multidimensional Hamiltonian systems: non-integrability and diffusion

Kozlov V.

Resumo

Hamiltonian systems of differential equations that are little different from completely integrable systems are under consideration. If such a system is integrable, then the action variables cannot change strongly, and there is no diffusion. Thus the non-integrable behaviour of a Hamiltonian system is closely linked with the diffusion of slow variables. This range of problems is discussed for a subclass of Hamiltonian systems. A new mechanism of diffusion, different from the ‘standard’ scheme of transition chains, is considered on these example. This mechanism is related to the breakdown of a large number of invariant tori of the non-perturbed problem which have almost resonance sets of frequencies. On the formal side, this phenomenon is based on the non-boundedness of integrals of conditionally-periodic functions of time with zero mean.
Uspekhi Matematicheskikh Nauk. 2025;80(5):3-22
pages 3-22 views

Brief introduction in greedy approximation

Temlyakov V.

Resumo

Sparse approximation is important in many applications because of the concise form of an approximant and good accuracy guarantees. The theory of compressed sensing, which proved to be very useful in the image processing and data sciences, is based on the concept of sparsity. A fundamental issue of sparse approximation is the problem of the construction of efficient algorithms, which provide good approximation. It turns out that greedy algorithms with respect to dictionaries are very good from this point of view. They are simple in implementation, and there are well-developed theoretical guarantees of their efficiency. This survey/tutorial paper contains a brief description of different kinds of greedy algorithms and results on their convergence and rate of convergence. Also, in Sections 14 and 15 we give some typical proofs of convergence and rate of convergence results for important greedy algorithms and in Section 16 we list some open problems.
Uspekhi Matematicheskikh Nauk. 2025;80(5):23-104
pages 23-104 views

On the spectrum of random Gram matrices of large dimension in the case of partial dependence

Yaskov P.

Resumo

A unified theory is proposed, which enables one to derive universal limiting spectral distributions for random Gram matrices of large dimension and related matrix models in the case of partial dependence.
Uspekhi Matematicheskikh Nauk. 2025;80(5):105-174
pages 105-174 views

Revaz Valer'yanovich Gamkrelidze (obituary)

Avakov E., Agrachev A., Aseev S., Giorgadze G., Davydov A., Zelikin M., Kozlov V., Lokutsievskiy L., Nikol'skii M., Ovchinnikov A., Osipov Y., Sarychev A., Sachkov Y., Treschev D.
Uspekhi Matematicheskikh Nauk. 2025;80(5):175-178
pages 175-178 views

SHORT MESSAGES

Slow convergence of weighted averages for flows and actions of countable amenable groups

Ryzhikov V.
Uspekhi Matematicheskikh Nauk. 2025;80(5):179-180
pages 179-180 views

Change of variables for Sobolev class functions on metric measure spaces

Vodopyanov S., Sboev D.
Uspekhi Matematicheskikh Nauk. 2025;80(5):181-182
pages 181-182 views

A Lax representation and integrability of homogeneous exact magnetic flows on spheres in all dimensions

Dragovich V., Gajić B., Jovanović B.
Uspekhi Matematicheskikh Nauk. 2025;80(5):183-184
pages 183-184 views

On the equivalence of optimal transport problem and action matching with optimal vector fields

Kornilov N., Korotin A.
Uspekhi Matematicheskikh Nauk. 2025;80(5):185-186
pages 185-186 views
pages 187-188 views

The nonlinear Perron–Frobenius stability problem for cubic stocharic matrices

Saburov M., Saburov K.
Uspekhi Matematicheskikh Nauk. 2025;80(5):189-190
pages 189-190 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).