Brief introduction in greedy approximation
- Authors: Temlyakov V.N.1,2,3,4
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
- University of South Carolina, Columbia, USA
- Issue: Vol 80, No 5 (2025)
- Pages: 23-104
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/331268
- DOI: https://doi.org/10.4213/rm10245
- ID: 331268
Cite item
Abstract
Sparse approximation is important in many applications because of the concise form of an approximant and good accuracy guarantees. The theory of compressed sensing, which proved to be very useful in the image processing and data sciences, is based on the concept of sparsity. A fundamental issue of sparse approximation is the problem of the construction of efficient algorithms, which provide good approximation. It turns out that greedy algorithms with respect to dictionaries are very good from this point of view. They are simple in implementation, and there are well-developed theoretical guarantees of their efficiency. This survey/tutorial paper contains a brief description of different kinds of greedy algorithms and results on their convergence and rate of convergence. Also, in Sections 14 and 15 we give some typical proofs of convergence and rate of convergence results for important greedy algorithms and in Section 16 we list some open problems.
About the authors
Vladimir Nikolaevich Temlyakov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia; University of South Carolina, Columbia, USA
Email: temlyakovv@gmail.com
Doctor of physico-mathematical sciences, Professor
References
- F. Albiac, J. L. Ansorena, V. Temlyakov, “Twenty-five years of greedy bases”, J. Approx. Theory, 307 (2025), 106141, 23 pp.
- S. Bahmani, B. Raj, P. T. Boufounos, “Greedy sparsity-constrained optimization”, J. Mach. Learn. Res., 14 (2013), 807–841
- A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945
- A. R. Barron, A. Cohen, W. Dahmen, R. A. DeVore, “Approximation and learning by greedy algorithms”, Ann. Statist., 36:1 (2008), 64–94
- D. Bazarkhanov, V. Temlyakov, “Nonlinear tensor product approximation of functions”, J. Complexity, 31:6 (2015), 867–884
- K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp.
- J. A. Cochran, “Composite integral operators and nuclearity”, Ark. Mat., 15:1-2 (1977), 215–222
- G. Davis, S. Mallat, M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98
- A. V. Dereventsov, “On the approximate weak Chebyshev greedy algorithm in uniformly smooth Banach spaces”, J. Math. Anal. Appl., 436:1 (2016), 288–304
- A. Dereventsov, Convergence and rate of convergence of approximate greedy-type algorithms, Thesis (Ph. D.), Univ. of South Carolina, 2017, 88 pp.
- A. V. Dereventsov, V. N. Temlyakov, “A unified way of analyzing some greedy algorithms”, J. Funct. Anal., 277:12 (2019), 108286, 30 pp.
- A. V. Dereventsov, V. N. Temlyakov, “Biorthogonal greedy algorithms in convex optimization”, Appl. Comput. Harmon. Anal., 60:3 (2022), 489–511
- R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187
- R. A. DeVore, V. N. Temlyakov, “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394
- S. Dilworth, G. Garrigos, E. Hernandez, D. Kutzarova, V. Temlyakov, “Lebesgue-type inequalities in greedy approximation”, J. Funct. Anal., 280:5 (2021), 108885, 37 pp.
- M. J. Donahue, L. Gurvits, C. Darken, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220
- Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
- M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Sel. Topics Signal Process, 1:4 (2007), 586–597
- S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, xviii+625 pp.
- I. Fredholm, “Sur une classe d'equations fonctionnelles”, Acta Math., 27:1 (1903), 365–390
- J. H. Friedman, W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823
- M. Ganichev, N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95
- Zheming Gao, G. Petrova, “Rescaled pure greedy algorithm for convex optimization”, Calcolo, 56:2 (2019), 15, 14 pp.
- A. V. Gasnikov, V. N. Temlyakov, “On greedy approximation in complex Banach spaces”, УМН, 79:6(480) (2024), 39–56
- A. C. Gilbert, S. Muthukrishnan, M. J. Strauss, “Approximation of functions over redundant dictionaries using coherence”, Proceedings of the fourteenth annual ACM–SIAM symposium on discrete algorithms (Baltimore, MD, 2003), ACM, New York, 2003, 243–252
- E. Hille, J. D. Tamarkin, “On the characteristic values of linear integral equations”, Acta Math., 57:1 (1931), 1–76
- P. J. Huber, “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475
- G. Ivanov, “Approximate Caratheodory's theorem in uniformly smooth Banach spaces”, Discrete Comput. Geom., 66:1 (2021), 273–280
- M. Jaggi, “Revisiting Frank–Wolfe: projection-free sparse convex optimization”, Proceedings of the 30th international conference on machine learning (Atlanta, GA, 2013), Proc. Mach. Learn. Res. (PMLR), 28, no. 1, 2013, 427–435
- L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882
- L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613
- J. M. Klusowskii, J. W. Siegel, Sharp convergence rates for matching pursuit, 2024 (v1 – 2023), 26 pp.
- S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379
- S. V. Konyagin, V. N. Temlyakov, “Rate of convergence of pure greedy algorithm”, East J. Approx., 5:4 (1999), 493–499
- E. D. Livshitz, V. N. Temlyakov, “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523
- E. D. Livshitz, V. N. Temlyakov, “Sparse approximation and recovery by greedy algorithms”, IEEE Trans. Inform. Theory, 60:7 (2014), 3989–4000
- Yu. Malykhin, “Matrix and tensor rigidity and $L_p$-approximation”, J. Complexity, 72 (2022), 101651, 13 pp.
- G. Petrova, “Rescaled pure greedy algorithm for Hilbert and Banach spaces”, Appl. Comput. Harmon. Anal., 41:3 (2016), 852–866
- D. Savu, Sparse approximation in Banach spaces, Thesis (Ph. D.), Univ. of South Carolina, 2009, 67 pp.
- D. Savu, V. N. Temlyakov, “Lebesgue-type inequalities for greedy approximation in Banach spaces”, IEEE Trans. Inform. Theory, 59:2 (2013), 1098–1106
- E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. I”, Math. Ann., 63:4 (1907), 433–476
- S. Shalev-Shwartz, N. Srebro, Tong Zhang, “Trading accuracy for sparsity in optimization problems with sparsity constraints”, SIAM J. Optim., 20:6 (2010), 2807–2832
- F. Smithies, “The eigen-values and singular values of integral equations”, Proc. London Math. Soc. (2), 43:4 (1937), 255–279
- V. N. Temlyakov, “Greedy algorithms and $M$-term approximation with regard to redundant dictionaries”, J. Approx. Theory, 98:1 (1999), 117–145
- V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2-3 (2000), 213–227
- V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292
- V. N. Temlyakov, “A criterion for convergence of weak greedy algorithms”, Adv. Comput. Math., 17:3 (2002), 269–280
- V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107
- V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292
- V. N. Temlyakov, “Greedy approximations”, Foundations of computational mathematics (Santander, 2005), London Math. Soc. Lecture Note Ser., 331, Cambridge Univ. Press, Cambridge, 2006, 371–394
- V. N. Temlyakov, “Greedy expansions in Banach spaces”, Adv. Comput. Math., 26:4 (2007), 431–449
- V. Temlyakov, “Greedy approximation in Banach spaces”, Banach spaces and their applications in analysis, Walter de Gruyter GmbH & Co. KG, Berlin, 2007, 193–208
- V. Temlyakov, “Greedy algorithms with prescribed coefficients”, J. Fourier Anal. Appl., 13:1 (2007), 71–86
- V. N. Temlyakov, “Relaxation in greedy approximation”, Constr. Approx., 28:2 (2008), 1–25
- V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp.
- V. N. Temlyakov, “Sparse approximation and recovery by greedy algorithms in Banach spaces”, Forum Math. Sigma, 2 (2014), e12, 26 pp.
- V. N. Temlyakov, “Greedy approximation in convex optimization”, Constr. Approx., 41:2 (2015), 269–296
- V. Temlyakov, Sparse approximation with bases, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, xii+261 pp.
- V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
- V. Temlyakov, “On the rate of convergence of greedy algorithms”, Mathematics, 11:11 (2023), 2559, 15 pp.
- A. Tewari, P. K. Ravikumar, I. S. Dhillon, “Greedy algorithms for structurally constrained high dimensional problems”, NIPS {'}11: Proceedings of the 25th international conference on neural information processing systems, Adv. Neural Inf. Process. Syst., 24, MIT Press, Cambridge, MA, 2011, 882–890
- H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)”, Math. Ann., 71:4 (1912), 441–479
- Tong Zhang, “Sequential greedy approximation for certain convex optimization problems”, IEEE Trans. Inform. Theory, 49:3 (2003), 682–691
- P. A. Borodin, E. Kopecka, “Alternating projections, remotest projections, and greedy approximation”, J. Approx. Theory, 260 (2020), 105486, 16 pp.
- P. A. Borodin, E. Kopecka, “Convergence of remote projections onto convex sets”, Pure Appl. Funct. Anal., 8:6 (2023), 1603–1620
- Ar. R. Valiullin, Al. R. Valiullin, “Sharp conditions for the convergence of greedy expansions with prescribed coefficients”, Open Math., 19:1 (2021), 1–10
- Ar. R. Valiullin, Al. R. Valiullin, V. V. Galatenko, “Greedy expansions with prescribed coefficients in Hilbert spaces”, Int. J. Math. Math. Sci., 2018 (2018), 4867091, 6 pp.
- Ar. R. Valiullin, Al. R. Valiullin, A. P. Solodov, “Sharp sufficient condition for the convergence of greedy expansions with errors in coefficient computation”, Demonstr. Math., 55:1 (2022), 254–264
Supplementary files
