Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

Том 80, № 1 (2025)

Мұқаба

On exponential algebraic geometry

Kazarnovskii B.

Аннотация

The set of roots of any finite system of exponential sums in the space $\mathbb{C}^n$ is called an exponential variety. We define the intersection index of varieties of complementary dimensions, and the ring of classes of numerical equivalence of exponential varieties with operations ‘addition-union’ and ‘multiplication-intersection’. This ring is analogous to the ring of conditions of the torus $(\mathbb{C}\setminus 0)^n$ and is called the ring of conditions of $\mathbb{C}^n$. We provide its description in terms of convex geometry. Namely, we associate an exponential variety with an element of a certain ring generated by convex polytopes in $\mathbb{C}^n$. We call this element the Newtonization of the exponential variety. For example, the Newtonization of an exponential hypersurface is its Newton polytope. The Newtonization map defines an isomorphism of the ring of conditions to the ring generated by convex polytopes in $\mathbb{C}^n$. It follows, in particular, that the intersection index of $n$ exponential hypersurfaces is equal to the mixed pseudo-volume of their Newton polytopes.Bibliography: 32 titles.

Uspekhi Matematicheskikh Nauk. 2025;80(1):3-58
pages 3-58 views

On stability of equilibria in a pseudo-Riemannian space

Kozlov V.

Аннотация

The stability of equilibria is considered for systems whose kinetic energy is a pseudo-Riemannian metric on the configuration space. Equilibria are critical points of the potential energy. For a linear system with two degrees of freedom the stability diagram is plotted and the bifurcations of eigenvalues are indicated. Points of maximum and minimum of the potential energy are unstable equilibria in the pseudo-Euclidean case. The same conclusion holds for nonlinear analytic systems with two degrees of freedom. Conditions for stability are indicated for multidimensional linear systems in a pseudo-Euclidean space. In particular, an equilibrium is stable if and only if the linear equations of motion can be reduced to a ‘natural’ system with positive definite kinetic energy and, in addition, the potential energy takes a strict minimum at this equilibrium. The influence of dissipative and gyroscopic forces on the stability of equilibria in a pseudo-Riemannian space is investigated. The instability of an isolated equilibrium is proved in the case when dissipative forces with full energy dissipation are added. The instability degree is calculated for linear dissipative systems. Conditions for the stability of linear systems in the case when large gyroscopic forces are applied to them are indicated.Bibliography: 40 titles.

Uspekhi Matematicheskikh Nauk. 2025;80(1):59-84
pages 59-84 views

Scalar approaches to the limit distribution of the zeros of Hermite–Pade polynomials for a Nikishin system

Suetin S.

Аннотация

The problem of the existence of a limit distribution of the zeros of Hermite–Pade polynomials for a pair of functions forming a Nikishin system is discussed. Two new scalar methods are proposed for the investigation of this problem. The first is based on a potential-theoretic equilibrium problem stated on a two-sheeted Riemann surface and on the use of the Gonchar–Rakhmanov–Stahl ($\operatorname{GRS}$-)method in treating this problem. The second method is based on the existence of a three-sheeted Riemann surface with Nuttall partition into sheets which is associated with a given pair of functions $f$, $f^2$, and it uses only the maximum principle for subharmonic functions. The connection of these methods and the results obtained with Stahl's methods and results of 1987–88 is discussed. Results of numerical experiments are presented.Bibliography: 109 titles.

Uspekhi Matematicheskikh Nauk. 2025;80(1):85-152
pages 85-152 views

Boundedness of toroidal multilinear pseudodifferential operators with symbols in Hörmander classes

Bazarkhanov D.

Аннотация

--

Uspekhi Matematicheskikh Nauk. 2025;80(1):153-154
pages 153-154 views

On an inverse problem of approximation theory in the Bloch space

Baranov A., Zarouf R., Kayumov I.
Uspekhi Matematicheskikh Nauk. 2025;80(1):155-156
pages 155-156 views

Sub-Riemannian geodesics on the 3-dimensional Heisenberg nilmanifold

Glutsyuk A., Sachkov Y.
Uspekhi Matematicheskikh Nauk. 2025;80(1):157-158
pages 157-158 views

Dynamics of second-order equations with impulse-type delayed feedback

Kashchenko I., Kaschenko S., Maslenikov I.
Uspekhi Matematicheskikh Nauk. 2025;80(1):159-160
pages 159-160 views

Threshold probabilities for colourings of random hypergraphs

Koshelev M., Shabanov D., Shaikheeva T.
Uspekhi Matematicheskikh Nauk. 2025;80(1):161-162
pages 161-162 views

Legendrian Lavrentiev links

Prasolov M.
Uspekhi Matematicheskikh Nauk. 2025;80(1):163-164
pages 163-164 views

Dmitry Valerievich Treschev (on his sixtieth birthday)

Bolotin S., Zubelevich O., Kozlov V., Kuksin S., Neishtadt A.
Uspekhi Matematicheskikh Nauk. 2025;80(1):165-170
pages 165-170 views

Albert Nikolaevich Shiryaev (on his 90th birthday)

Bulinski A., Gushchin A., Zhitlukhin M., Kozlov V., Manita A., Muravlev A., Novikov A., Pavlov I., Treschev D., Holevo A., Yarovaya E., Yaskov P.
Uspekhi Matematicheskikh Nauk. 2025;80(1):171-177
pages 171-177 views

Mathematical culture of the society: its value and development

Kozlov V., Taimanov I.
Uspekhi Matematicheskikh Nauk. 2025;80(1):178-183
pages 178-183 views
pages 184-188 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).