Convergence of generalized power series satisfying functional equations
- Authors: Gontsov R.R.1,2, Goryuchkina I.V.3
-
Affiliations:
- National Research University Higher School of Economics
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
- Issue: Vol 80, No 3 (2025)
- Pages: 3-66
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/306755
- DOI: https://doi.org/10.4213/rm10235
- ID: 306755
Cite item
Abstract
We consider questions relating to the convergence of generalized power series (with complex-valued exponents) that satisfy formally some analytic functional equations: a differential equation, a $q$-difference one, or Mahler's equation. We present new results, as well as generalizations of some of our earlier results, thus summing up our investigations of this subject. We also present a selection of results on the existence and uniqueness of local holomorphic solutions of such equations and review some classical results on the convergence of Taylor power series that solve them formally.
About the authors
Renat Ravilevich Gontsov
National Research University Higher School of Economics; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Author for correspondence.
Email: gontsovrr@gmail.com
Candidate of physico-mathematical sciences, Associate professor
Irina Vladimirovna Goryuchkina
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Email: igoryuchkina@gmail.com
Candidate of physico-mathematical sciences, Senior Researcher
References
- Н. Г. Чеботарев, “ ‘Многоугольник Ньютона’ и его роль в современном развитии математики”, Исаак Ньютон, АН СССР, М., 1943, 99–126
- M. Artin, “On the solutions of analytic equations”, Invent. Math., 5 (1968), 277–291
- A. Ploski, “Formal and convergent solutions of analytic equations”, Analytic and algebraic geometry. 2, Łodz Univ. Press, Łodz, 2017, 161–173
- T. Levi-Civita, “Sugli infiniti ed infinitesimi attuali quali elementi analitici”, Atti Ist. Veneto di Sci., Lett. ed Arti, IV (1892–1893), 1765–1815
- A. Ostrowski, “Untersuchungen zur arithmetischen Theorie der Körper. I, II, III”, Math. Z., 39:1 (1935), 269–404
- D. Laugwitz, “Eine nichtarchimedische Erweiterung angeordneter Körper”, Math. Nachr., 37:3-4 (1968), 225–236
- A. Robinson, “Function theory on some nonarchimedean fields”, Amer. Math. Monthly, 80:6 (1973), 87–109
- H. B. Fine, “On the functions defined by differential equations, with an extension of the Puiseux polygon construction to these equations”, Amer. J. Math., 11:4 (1889), 317–328
- Н. В. Бугаевъ, “Начало наибольшихъ и наименьшихъ показателей въ теорiи дифференцiальныхъ уравненiй. Целые частные интегралы”, Матем. сб., 16:1 (1891), 39–80
- M. Petrowitch, Sur les zeros et les infinis des integrales des equations differentielles algebriques, Thèse, Gauthier-Villars, Paris, 1894
- J. Cano, “On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations”, Analysis, 13:1-2 (1993), 103–119
- D. Yu. Grigor'ev, M. F. Singer, “Solving ordinary differential equations in terms of series with real exponents”, Trans. Amer. Math. Soc., 327:1 (1991), 329–351
- А. Д. Брюно, “Асимптотики и разложения решений обыкновенного дифференциального уравнения”, УМН, 59:3(357) (2004), 31–80
- E. Hille, “Note on Dirichlet's series with complex exponents”, Ann. of Math. (2), 25:3 (1924), 261–278
- V. Bernstein, Leçons sur les progrès recents de la theorie des series de Dirichlet, Gauthier-Villars, Paris, 1933, xiv+320 pp.
- А. Ф. Леонтьев, Ряды экспонент, Наука, М., 1976, 536 с.
- B. Malgrange, “Sur le theorème de Maillet”, Asymptot. Anal., 2:1 (1989), 1–4
- Changgui Zhang, “Sur un theorème du type de Maillet–Malgrange pour les equations $q$-differences-differentielles”, Asymptot. Anal., 17:4 (1998), 309–314
- Xianyi Li, Changgui Zhang, “Existence of analytic solutions to analytic nonlinear $q$-difference equations”, J. Math. Anal. Appl., 375:2 (2011), 412–417
- L. Di Vizio, “An ultrametric version of the Maillet–Malgrange theorem for nonlinear $q$-difference equations”, Proc. Amer. Math. Soc., 136:8 (2008), 2803–2814
- J.-P. Bezivin, “Sur les equations fonctionnelles aux $q$-differences”, Aequationes Math., 43:2-3 (1992), 159–176
- J.-P. Bezivin, “Sur une classe d'equations fonctionnelles non lineaires”, Funkcial. Ekvac., 37:2 (1994), 263–271
- R. Gontsov, I. Goryuchkina, “On the existence and convergence of formal power series solutions of nonlinear Mahler equations”, J. Symbolic Comput., 128 (2025), 102399, 11 pp.
- B. L. J. Braaksma, “Multisummability of formal power series solutions of nonlinear meromorphic differential equations”, Ann. Inst. Fourier (Grenoble), 42:3 (1992), 517–540
- J.-P. Ramis, Y. Sibuya, “A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations”, Ann. Inst. Fourier (Grenoble), 44:3 (1994), 811–848
- Changgui Zhang, “Developpements asymptotiques $q$-Gevrey et series $Gq$-sommables”, Ann. Inst. Fourier (Grenoble), 49:1 (1999), 227–261
- F. Marotte, Changgui Zhang, “Multisommabilite des series entières solutions formelles d'une equation aux $q$-differences lineaire analytique”, Ann. Inst. Fourier (Grenoble), 50:6 (2000), 1859–1890
- Ж.-П. Рамис, Расходящиеся ряды и асимптотическая теория, Ин-т компьютерных исследований, М.–Ижевск, 2002, 79 с.
- L. Di Vizio, J.-P. Ramis, J. Sauloy, C. Zhang, “Equations aux $q$-differences”, Gaz. Math., 96 (2003), 20–49
- R. Gerard, D. A. Lutz, “Maillet type theorems for algebraic difference equations”, Kumamoto J. Math., 3 (1990), 11–26
- J. Ecalle, Les fonctions resurgentes, v. I, Publ. Math. Orsay, 81-5, Les algèbres de fonctions resurgentes, Univ. de Paris-Sud, Dep. Math., Orsay, 1981, 247 pp.
- R. Gontsov, I. Goryuchkina, “The Maillet–Malgrange type theorem for generalized power series”, Manuscripta Math., 156:1-2 (2018), 171–185
- Б. В. Шабат, Введение в комплексный анализ, Ч. 2, 2-е изд., Наука, М., 1976, 400 с.
- В. В. Голубев, Лекции по аналитической теории дифференциальных уравнений, 2-е изд., Гостехиздат, М.–Л., 1950, 436 с.
- Jianguo Si, Weinian Zhang, “Analytic solutions of a $q$-difference equation and applications to iterative equations”, J. Difference Equ. Appl., 10:11 (2004), 955–962
- Bing Xu, Weinian Zhang, “Small divisor problem for an analytic $q$-difference equation”, J. Math. Anal. Appl., 342:1 (2008), 694–703
- Jianguo Si, Houyu Zhao, “Small divisor problem in dynamical systems and analytic solutions of a $q$-difference equation with a singularity at the origin”, Results Math., 58:3-4 (2010), 337–353
- C. L. Siegel, “Iteration of analytic functions”, Ann. of Math. (2), 43:4 (1942), 607–612
- Дж. Милнор, Голоморфная динамика. Вводные лекции, НИЦ “Регулярная и хаотическая динамика”, Ижевск, 2000, 320 с.
- А. Я. Хинчин, Цепные дроби, 2-е изд., ГИТТЛ, М.–Л., 1949, 116 с.
- А. О. Гельфонд, Трансцендентные и алгебраические числа, ГИТТЛ, М., 1952, 224 с.
- А. Н. Хованский, Приложение цепных дробей и их обобщений к вопросам приближенного анализа, ГИТТЛ, М., 1956, 203 с.
- А. Д. Брюно, “О сходимости преобразований дифференциальных уравнений к нормальной форме”, Докл. АН СССР, 165:5 (1965), 987–989
- А. Д. Брюно, “Аналитическая форма дифференциальных уравнений”, Тр. ММО, 25, Изд-во Моск. ун-та, М., 1971, 119–262
- H. Rüssmann, “Über die Iteration analytischer Funktionen”, J. Math. Mech., 17:6 (1967), 523–532
- J.-C. Yoccoz, “Theorème de Siegel, nombres de Bruno et polynômes quadratiques”, Petits diviseurs en dimension 1, Asterisque, 231, Soc. Math. France, Paris, 1995, 3–88
- С. М. Воронин, “Аналитическая классификация ростков конформных отображений $(mathbf C,0)to(mathbf C,0)$ с тождественной линейной частью”, Функц. анализ и его прил., 15:1 (1981), 1–17
- K. Nishioka, Mahler functions and transcendence, Lecture Notes in Math., 1631, Springer-Verlag, Berlin, 1996, viii+185 pp.
- L. E. Dickson, “Finiteness of the odd perfect and primitive abundant numbers with $n$ distinct prime factors”, Amer. J. Math., 35:4 (1913), 413–422
- J. Cano, P. Fortuny Ayuso, “Power series solutions of non-linear $q$-difference equations and the Newton–Puiseux polygon”, Qual. Theory Dyn. Syst., 21:4 (2022), 123, 31 pp.
- R. R. Gontsov, I. V. Goryuchkina, “On the convergence of generalized power series satisfying an algebraic ODE”, Asymptot. Anal., 93:4 (2015), 311–325
- R. Gontsov, I. Goryuchkina, A. Lastra, Small divisors in the problem of the convergence of generalized power series solutions of $q$-difference equations, 2022, 16 pp.
- W. M. Schmidt, “Simultaneous approximation to algebraic numbers by rationals”, Acta Math., 125 (1970), 189–201
- R. Gontsov, I. Goryuchkina, A. Lastra, “On the convergence of generalized power series solutions of $q$-difference equations”, Aequationes Math., 96:3 (2022), 579–597
Supplementary files
