Strong and weak associativity of weighted Sobolev spaces of the first order
- Authors: Stepanov V.D.1,2, Ushakova E.P.2,3
-
Affiliations:
- Computer Centre of Far Eastern Branch RAS
- Steklov Mathematical Institute of Russian Academy of Sciences
- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
- Issue: Vol 78, No 1 (2023)
- Pages: 167-204
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133734
- DOI: https://doi.org/10.4213/rm10075
- ID: 133734
Cite item
Abstract
A brief overview of the recent results on the problem of characterization of associative and double associative spaces of function classes, including both ideal and non-ideal structures, is presented. The latter include two-weighted Sobolev spaces of the first order on the positive semi- axis. It is shown that, in contrast to the notion of duality, associativity can be ‘strong’ or ‘weak’. In addition, double associative spaces are further divided into three types. In this context it is established that a weighted Sobolev space of functions with compact support possesses weak associative reflexivity, while the strong associative space of a weak associative space is trivial. Weighted classes of Cesàro and Copson type have similar properties; for these classes the problem us fully investigated, and their connections with Sobolev spaces with power weights are established. As an application, the problem of boundedness of the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space is considered.Bibliography: 49 titles.
About the authors
Vladimir Dmitrievich Stepanov
Computer Centre of Far Eastern Branch RAS; Steklov Mathematical Institute of Russian Academy of Sciences
Email: stepanov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Elena Pavlovna Ushakova
Steklov Mathematical Institute of Russian Academy of Sciences; V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Email: elenau@inbox.ru
Doctor of physico-mathematical sciences, no status
References
- C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
- Д. В. Прохоров, В. Д. Степанов, Е. П. Ушакова, “Характеризация функциональных пространств, ассоциированных с весовыми пространствами Соболева первого порядка на действительной оси”, УМН, 74:6(450) (2019), 119–158
- D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5-6 (2017), 890–912
- G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120, no. 576, Amer. Math. Soc., Providence, RI, 1996, viii+130 pp.
- K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Math., 1679, Springer-Verlag, Berlin, 1998, x+114 pp.
- S. V. Astashkin, L. Maligranda, “Structure of Cesàro function spaces: a survey”, Function spaces X, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, 13–40
- K. Lesnik, L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951
- B. D. Hassard, D. A. Hussein, “On Cesàro function spaces”, Tamkang J. Math., 4 (1973), 19–25
- A. Kaminska, D. Kubiak, “On the dual of Cesàro function space”, Nonlinear Anal., 75:5 (2012), 2760–2773
- G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216
- M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332
- В. Д. Степанов, “Об ассоциированных пространствах к весовым пространствам Чезаро и Копсона”, Матем. заметки, 111:3 (2022), 443–450
- E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158
- А. Гогатишвили, В. Д. Степанов, “Редукционные теоремы для весовых интегральных неравенств на конусе монотонных функций”, УМН, 68:4(412) (2013), 3–68
- V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186
- G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis (Milovy, 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310
- S. V. Astashkin, L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N. S.), 20:3 (2009), 329–379
- М. Л. Гольдман, П. П. Забрейко, “Оптимальное восстановление банахова функционального пространства по конусу неотрицательных функций”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Труды МИАН, 284, МАИК “Наука/Интерпериодика”, М., 2014, 142–156
- В. Д. Степанов, “Об оптимальных пространствах Банаха, содержащих весовой конус монотонных или квазивогнутых функций”, Матем. заметки, 98:6 (2015), 907–922
- Г. Харди, Дж. И. Литтлвуд, Г. Полиа, Неравенства, ИЛ, М., 1948, 456 с.
- D. V. Prokhorov, “On the associated spaces for altered Cesàro space”, Anal. Math., 48:4 (2022), 1169–1183
- D. V. Prokhorov, “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325, 11 pp.
- V. D. Stepanov, “On Cesàro and Copson type function spaces. Reflexivity”, J. Math. Anal. Appl., 507:1 (2022), 125764, 18 pp.
- R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp.
- С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., перераб. и доп., Наука, М., 1988, 334 с.
- A. Kaminska, M. .{Z}yluk, “Uniform convexity, reflexivity, superreflexivity and $B$ convexity of generalized Sobolev spaces $W^{1,Phi}$”, J. Math. Anal. Appl., 509:1 (2022), 125925, 31 pp.
- A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48
- A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space for $1
- A. Kalybay, R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turkish J. Math., 43:1 (2019), 301–315
- Р. Ойнаров, “Ограниченность интегральных операторов в весовых пространствах Соболева”, Изв. РАН. Сер. матем., 78:4 (2014), 207–223
- R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038
- А. А. Беляев, А. А. Шкаликов, “Мультипликаторы в пространствах бесселевых потенциалов: случай индексов неотрицательной гладкости”, Матем. заметки, 102:5 (2017), 684–699
- А. А. Беляев, А. А. Шкаликов, “Мультипликаторы в пространствах бесселевых потенциалов: случай индексов гладкости разного знака”, Алгебра и анализ, 30:2 (2018), 76–96
- А. А. Шкаликов, Дж.-Г. Бак, “Мультипликаторы в дуальных соболевских пространствах и операторы Шрeдингера с потенциалами-распределениями”, Матем. заметки, 71:5 (2002), 643–651
- R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116
- S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8-9 (2015), 877–897
- A. Kufner, L.-E. Persson, N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp.
- В. Д. Степанов, Е. П. Ушакова, “Об интегральных операторах с переменными пределами интегрирования”, Функциональные пространства, гармонический анализ, дифференциальные уравнения, Сборник статей. К 95-летию со дня рождения академика Сергея Михайловича Никольского, Труды МИАН, 232, Наука, МАИК “Наука/Интерпериодика”, М., 2001, 298–317
- G. Leoni, A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009, xvi+607 pp.
- К. И. Бабенко, “О сопряженных функциях”, Докл. АН СССР, 62:2 (1948), 157–160
- R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251
- M. T. Lacey, E. T. Sawyer, Chun-Yen Shen, I. Uriarte-Tuero, “Two-weight inequality for the Hilbert transform: a real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820
- M. T. Lacey, “Two-weight inequality for the {H}ilbert transform: a real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840
- T. P. Hytönen, “The two-weight inequality for the Hilbert transform with general measures”, Proc. Lond. Math. Soc. (3), 117:3 (2018), 483–526
- E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016, 59–69
- V. D. Stepanov, S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1039–1047
- V. D. Stepanov, “On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space”, J. Fourier Anal. Appl., 28:3 (2022), 46, 17 pp.
- A. M. Abylayeva, L.-E. Persson, “Hardy type inequalities and compactness of a class of integral operators with logarithmic singularities”, Math. Inequal. Appl., 21:1 (2018), 201–215
- V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510
Supplementary files
