Schubert calculus and intersection theory of flag manifolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hilbert's 15th problem called for a rigorous foundation of Schubert calculus, of which a long-standing and challenging part is the Schubert problem of characteristics. In the course of securing a foundation for algebraic geometry, Van der Waerden and Weil attributed this problem to the intersection theory of flag manifolds.This article surveys the background, content, and solution of the problem of characteristics. Our main results are a unified formula for the characteristics and a systematic description of the intersection rings of flag manifolds. We illustrate the effectiveness of the formula and the algorithm by explicit examples.Bibliography: 71 titles.

About the authors

Haibao Duan

Yau Mathematical Sciences Center, Tsinghua University; Academy of Mathematics and Systems Science, Chinese Academy of Sciences; School of Mathematical Sciences, Dalian University of Technology

Email: dhb@math.ac.cn

Xuezhi Zhao

Capital Normal University

Email: zhaoxve@mail.cnu.edu.cn

References

  1. М. Ф. Атья, Ф. Хирцебрух, “Векторные расслоения и однородные пространства”, Математика, 6:2 (1962), 3–39
  2. H. F. Baker, Principles of geometry, v. 6, Cambridge Univ. Press, Cambridge, 1933, ix+308 pp.
  3. P. F. Baum, “On the cohomology of homogeneous spaces”, Topology, 7 (1968), 15–38
  4. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, “Клетки Шуберта и когомологии пространств $G/P$”, УМН, 28:3(171) (1973), 3–26
  5. S. Billey, M. Haiman, “Schubert polynomials for the classical groups”, J. Amer. Math. Soc., 8:2 (1995), 443–482
  6. A. Borel, “Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207
  7. A. Borel, “Kählerian coset spaces of semisimple Lie groups”, Proc. Nat. Acad. Sci. U.S.A., 40:12 (1954), 1147–1151
  8. A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80:2 (1958), 458–538
  9. Н. Бурбаки, Группы и алгебры Ли, гл. 1–3, Элементы математики, Мир, М., 1976, 496 с.
  10. C. B. Boyer, A history of mathematics, John Wiley & Sons, Inc., New York–London–Sydney, 1968, xv+717 pp.
  11. A. S. Buch, “Mutations of puzzles and equivariant cohomology of two-step flag varieties”, Ann. of Math. (2), 182:1 (2015), 173–220
  12. A. S. Buch, A. Kresch, K. Purbhoo, H. Tamvakis, “The puzzle conjecture for the cohomology of two-step flag manifolds”, J. Algebraic Combin., 44:4 (2016), 973–1007
  13. M. Chasles, “Construction des coniques qui satisfont à cinq conditions”, C. R. Acad. Sci. Paris, 58 (1864), 297–308
  14. C. Chevalley, “Sur les decompositions cellulaires des espaces $G/B$”, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Proc. Sympos. Pure Math, 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, 1–23
  15. J. L. Coolidge, A history of geometrical methods, Oxford Univ. Press, New York, 1940, xviii+451 pp.
  16. I. Coskun, “A Littlewood–Richardson rule for two-step flag varieties”, Invent. Math., 176:2 (2009), 325–395
  17. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR – A computer algebra system for polynomial computations
  18. Y. Dold-Samplonius, “Interview with Bartel Leendert van der Waerden”, Notices Amer. Math. Soc., 44:3 (1997), 313–320
  19. Haibao Duan, “The degree of a Schubert variety”, Adv. Math., 180:1 (2003), 112–133
  20. Haibao Duan, “Multiplicative rule of Schubert classes”, Invent. Math., 159:2 (2005), 407–436
  21. Haibao Duan, “Multiplicative rule in the Grothendieck cohomology of a flag variety”, J. Reine Angew. Math., 2006:600 (2006), 157–176
  22. Haibao Duan, “On the Borel transgression in the fibration $Gto G/T$”, Homology Homotopy Appl., 20:1 (2018), 79–86
  23. Haibao Duan, Banghe Li, Topology of blow-ups and enumerative geometry, 2016 (v1 – 2009), 30 pp.
  24. Haibao Duan, Xuezhi Zhao, Appendix to “The Chow rings of generalized Grassmannians”, 2007 (v1 – 2005), 27 pp.
  25. Haibao Duan, Xuezhi Zhao, “Algorithm for multiplying Schubert classes”, Internat. J. Algebra Comput., 16:6 (2006), 1197–1210
  26. Haibao Duan, Xuezhi Zhao, “A unified formula for Steenrod operations in flag manifolds”, Compos. Math., 143:1 (2007), 257–270
  27. Haibao Duan, Xuezhi Zhao, Schubert calculus and cohomology of Lie groups. Part I. $1$-connected Lie groups, 2015 (v1 – 2007), 32 pp.
  28. Haibao Duan, Xuezhi Zhao, “Erratum: Multiplicative rule of Schubert classes”, Invent. Math., 177:3 (2009), 683–684
  29. Haibao Duan, Xuezhi Zhao, “The Chow rings of generalized Grassmannians”, Found. Math. Comput., 10:3 (2010), 245–274
  30. Haibao Duan, Xuezhi Zhao, “Schubert calculus and the Hopf algebra structures of exceptional Lie groups”, Forum Math., 26:1 (2014), 113–139
  31. Haibao Duan, Xuezhi Zhao, “Schubert presentation of the cohomology ring of flag manifolds $G/T$”, LMS J. Comput. Math., 18:1 (2015), 489–506
  32. Haibao Duan, Xuezhi Zhao, “On Schubert's problem of characteristics”, Schubert calculus and its applications in combinatorics and representation theory, Springer Proc. Math. Stat., 332, Springer, Singapore, 2020, 43–71
  33. C. Ehresmann, “Sur la topologie de certains espaces homogènes”, Ann. of Math. (2), 35:2 (1934), 396–443
  34. D. Eisenbud, J. Harris, 3264 and all that. A second course in algebraic geometry, Cambridge Univ. Press, Cambridge, 2016, xiv+616 pp.
  35. S. Fomin, S. Gelfand, A. Postnikov, “Quantum Schubert polynomials”, J. Amer. Math. Soc., 10:3 (1997), 565–596
  36. S. Fomin, A. N. Kirillov, “Combinatorial $B_n$-analogues of Schubert polynomials”, Trans. Amer. Math. Soc., 348:9 (1996), 3591–3620
  37. W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp.
  38. W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer, Berlin, 1998, xiv+470 pp.
  39. W. Fulton, P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Math., 1689, Springer-Verlag, Berlin, 1998, xii+148 pp.
  40. G. Z. Giambelli, “Risoluzione del probema degli spazi secanti”, Mem. Accad. Sci. Torino (2), 52 (1903), 171–211
  41. D. R. Grayson, A. Seceleanu, M. E. Stillman, Computations in intersection rings of flag bundles, 2022 (v1 – 2012), 37 pp.
  42. D. Grayson, A. Stillman, Macaulay2: a software system for research in algebraic geometry
  43. D. Hilbert, “Mathematical problems”, Bull. Amer. Math. Soc., 8:10 (1902), 437–479
  44. D. Husemoller, J. C. Moore, J. Stasheff, “Differential homological algebra and homogeneous spaces”, J. Pure Appl. Algebra, 5:2 (1974), 113–185
  45. S. Katz, Enumerative geometry and string theory, Stud. Math. Libr., 32, Amer. Math. Soc., Providence, RI, 2006, xiv+206 pp.
  46. A. N. Kirillov, H. Naruse, “Construction of double Grothendieck polynomials of classical types using IdCoxeter algebras”, Tokyo J. Math., 39:3 (2017), 695–728
  47. S. L. Kleiman, “Problem 15: rigorous foundation of Schubert's enumerative calculus”, Mathematical developments arising from Hilbert problems (Northern Illinois Univ., De Kalb, IL, 1974), Proc. Sympos. Pure Math., 28, Amer. Math. Soc., Providence, RI, 1976, 445–482
  48. S. L. Kleiman, “Book review: W. Fulton ‘Intersection theory’ // W. Fulton ‘Introduction to intersection theory in algebraic geometry’”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 137–143
  49. S. L. Kleiman, “Intersection theory and enumerative geometry: a decade in review”, With the collaboration of A. Thorup, Algebraic geometry, Bowdoin, 1985, Part 2 (Brunswick, ME, 1985), Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, 321–370
  50. L. Lascoux, M. P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294:13 (1982), 447–450
  51. S. Lefschetz, “Intersections and transformations of complexes and manifolds”, Trans. Amer. Math. Soc., 28:1 (1926), 1–49
  52. D. E. Littlewood, A. R. Richardson, “Group characters and algebra”, Philos. Trans. Roy. Soc. London Ser. A, 233 (1934), 99–141
  53. Ю. И. Манин, “К пятнадцатой проблеме Гильберта”, Проблемы Гильберта, Наука, М., 1969, 175–181
  54. R. Marlin, “Anneaux de Chow des groupes algebriques $operatorname{SU}(n)$, $operatorname{Sp}(n)$, $operatorname{SO}(n)$, $operatorname{Spin}(n)$, $mathrm G_{2}$, $mathrm F_{4}$; torsion”, C. R. Acad. Sci. Paris Ser. A, 279 (1974), 119–122
  55. Дж. Милнор, Дж. Сташеф, Характеристические классы, Мир, М., 1979, 371 с.
  56. S. I. Nikolenko, N. S. Semenov, Chow ring structure made simple, 2006, 17 pp.
  57. J. Scherk, Algebra. A computational introduction, Stud. Adv. Math., Chapman & Hall/CRC, Boca Raton, FL, 2000, x+319 pp.
  58. H. Schubert, “Zur Theorie der Charakteristiken”, J. Reine Angew. Math., 1870:71 (1870), 366–386
  59. H. Schubert, “Anzahl-Bestimmungen für lineare Räume. Beliebiger Dimension”, Acta Math., 8 (1886), 97–118
  60. H. Schubert, “Lösung des Characteristiken-Problems für lineare Räume beliebiger Dimension”, Mitt. Math. Ges. Hamburg, 1 (1886), 134–155
  61. H. Schubert, Kalkül der abzählenden Geometrie, Reprint of the 1879 original, Springer-Verlag, Berlin–New York, 1979, 349 pp.
  62. F. Severi, “Sul principio della conservazione del numero”, Rend. Circ. Mat. Palermo, 33 (1912), 313–327
  63. F. Severi, “Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche”, Atti Ist. Veneto Sci. Lett. Art., 75 (1916), 1121–1162
  64. E. Smirnov, A. Tutubalina, Pipe dreams for Schubert polynomials of the classical groups, 2020, 36 pp.
  65. F. Sottile, Schubert calculus, Springer Encyclopedia of Mathematics, 2012
  66. H. Tamvakis, “Giambelli and degeneracy locus formulas for classical $G/P$ spaces”, Mosc. Math. J., 16:1 (2016), 125–177
  67. H. Toda, “On the cohomology ring of some homogeneous spaces”, J. Math. Kyoto Univ., 15 (1975), 185–199
  68. B. L. van der Waerden, “Topologische Begründung des Kalküls der abzählenden Geometrie”, Math. Ann., 102:1 (1930), 337–362
  69. B. L. van der Waerden, “The foundation of algebraic geometry from Severi to Andre Weil”, Arch. History Exact Sci., 7:3 (1971), 171–180
  70. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., XXIV, Rev. ed., Amer. Math. Soc., Providence, RI, 1962, xx+363 pp.
  71. J. Wolf, “The cohomology of homogeneous spaces”, Amer. J. Math., 99:2 (1977), 312–340

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Duan H., Zhao X.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).