Equivariant completions of affine spaces
- Authors: Arzhantsev I.V.1, Zaitseva Y.I.1
-
Affiliations:
- HSE University
- Issue: Vol 77, No 4 (2022)
- Pages: 3-90
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133702
- DOI: https://doi.org/10.4213/rm10046
- ID: 133702
Cite item
Abstract
About the authors
Ivan Vladimirovich Arzhantsev
HSE University
Email: arjantsev@hse.ru
Doctor of physico-mathematical sciences, Professor
Yulia Ivanovna Zaitseva
HSE Universitywithout scientific degree, no status
References
- K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334:3 (2006), 557–607
- K. Altmann, J. Hausen, H. Süss, “Gluing affine torus actions via divisorial fans”, Transform. Groups, 13:2 (2008), 215–242
- I. V. Arzhantsev, “Flag varieties as equivariant compactifications of $mathbb{G}_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786
- I. Arzhantsev, “Limit points and additive group actions”, Ric. Mat., 2021, 1–10, Publ. online
- I. Arzhantsev, S. Bragin, Yu. Zaitseva, “Commutative algebraic monoid structures on affine spaces”, Commun. Contemp. Math., 22:8 (2020), 1950064, 23 pp.
- I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp.
- I. Arzhantsev, S. Gaifullin, “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5-6 (2017), 662–671
- I. Arzhantsev, P. Kotenkova, “Equivariant embeddings of commutative linear algebraic groups of corank one”, Doc. Math., 20 (2015), 1039–1053
- I. Arzhantsev, A. Perepechko, H. Süss, “Infinite transitivity on universal torsors”, J. Lond. Math. Soc. (2), 89:3 (2014), 762–778
- I. Arzhantsev, A. Popovskiy, “Additive actions on projective hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 17–33
- I. Arzhantsev, E. Romaskevich, “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879
- I. Arzhantsev, E. Sharoyko, “Hassett–Tschinkel correspondence: modality and projective hypersurfaces”, J. Algebra, 348:1 (2011), 217–232
- И. В. Аржанцев, М. Г. Зайденберг, К. Г. Куюмжиян, “Многообразия флагов, торические многообразия и надстройки: три примера бесконечной транзитивности”, Матем. сб., 203:7 (2012), 3–30
- М. Атья, И. Макдональд, Введение в коммутативную алгебру, Мир, М., 1972, 160 с.
- J. Barria, P. R. Halmos, “Vector bases for two commuting matrices”, Linear Multilinear Algebra, 27:3 (1990), 147–157
- R. Basili, A. Iarrobino, L. Khatami, “Commuting nilpotent matrices and Artinian algebras”, J. Commut. Algebra, 2:3 (2010), 295–325
- I. Bazhov, “On orbits of the automorphism group on a complete toric variety”, Beitr. Algebra Geom., 54:2 (2013), 471–481
- I. Bazhov, Additive structures on cubic hypersurfaces, 2013, 8 pp.
- F. Berchtold, “Lifting of morphisms to quotient presentations”, Manuscripta Math., 110:1 (2003), 33–44
- V. Borovik, S. Gaifullin, A. Trushin, “Commutative actions on smooth projective quadrics”, Comm. Algebra, 2022, 1–8, Publ. online
- W. C. Brown, “Constructing maximal commutative subalgebras of matrix rings in small dimensions”, Comm. Algebra, 25:12 (1997), 3923–3946
- W. C. Brown, F. W. Call, “Maximal commutative subalgebras of $n times n$ matrices”, Comm. Algebra, 21:12 (1993), 4439–4460
- W. Bruns, J. Gubeladze, “Polytopal linear groups”, J. Algebra, 218:2 (1999), 715–737
- V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp.
- P. Caldero, “Toric degenerations of Schubert varieties”, Transform. Groups, 7:1 (2002), 51–60
- G. Casnati, “Isomorphism types of Artinian Gorenstein local algebras of multiplicity at most $9$”, Comm. Algebra, 38:8 (2010), 2738–2761
- G. Cerulli Irelli, E. Feigin, M. Reineke, “Quiver Grassmannians and degenerate flag varieties”, Algebra Number Theory, 6:1 (2012), 165–194
- A. Chambert-Loir, Yu. Tschinkel, “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math., 148:2 (2002), 421–452
- A. Chambert-Loir, Yu. Tschinkel, “Integral points of bounded height on partial equivariant compactifications of vector groups”, Duke Math. J., 161:15 (2012), 2799–2836
- B. Charles, “Sur la permutabilite des operateurs lineaires”, C. R. Acad. Sci. Paris, 236 (1953), 1722–1723
- B. Charles, “Un critère de maximalite pour les anneaux commutatifs d'operateurs lineaires”, C. R. Acad. Sci. Paris, 236 (1953), 1835–1837
- B. Charles, “Sur l'algèbre des operateurs lineaires”, J. Math. Pures Appl. (9), 33 (1954), 81–145
- I. Cheltsov, Jihun Park, Yu. Prokhorov, M. Zaidenberg, “Cylinders in Fano varieties”, EMS Surv. Math. Sci., 8:1-2 (2021), 39–105
- Daewoong Cheong, “Equivariant compactifications of a nilpotent group by $G/P$”, Transform. Groups, 22:1 (2017), 163–186
- R. C. Courter, “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32:2 (1965), 225–232
- D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50
- D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
- M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ecole Norm. Sup. (4), 3:4 (1970), 507–588
- U. Derenthal, D. Loughran, “Singular del Pezzo surfaces that are equivariant compactifications”, Исследования по теории чисел. 10, Зап. науч. сем. ПОМИ, 377, ПОМИ, СПб., 2010, 26–43
- U. Derenthal, D. Loughran, “Equivariant compactifications of two-dimensional algebraic groups”, Proc. Edinb. Math. Soc. (2), 58:1 (2015), 149–168
- R. Devyatov, “Unipotent commutative group actions on flag varieties and nilpotent multiplications”, Transform. Groups, 20:1 (2015), 21–64
- S. Dzhunusov, “On uniqueness of additive actions on complete toric varieties”, J. Algebra, 2022, 1–11, Publ. online
- S. Dzhunusov, “Additive actions on complete toric surfaces”, Internat. J. Algebra Comput., 31:1 (2021), 19–35
- J. Elias, G. Valla, “Isomorphism classes of certain Artinian Gorenstein algebras”, Algebr. Represent. Theory, 14:3 (2011), 429–448
- E. Feigin, “$mathbb{G}^M_a$ degeneration of flag varieties”, Selecta Math. (N. S.), 18:3 (2012), 513–537
- E. Feigin, M. Finkelberg, “Degenerate flag varieties of type A: Frobenius splitting and BW theorem”, Math. Z., 275:1-2 (2013), 55–77
- H. Flenner, M. Zaidenberg, “On the uniqueness of $mathbb{C}^*$-actions on affine surfaces”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 97–111
- F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb. (3), 56, Springer, Heidelberg, 2011, xii+489 pp.
- G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory and Algebraic Transformation Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp.
- G. Frobenius, “Über vertauschbare Matrizen”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1896 (1896), 601–614
- Baohua Fu, Jun-Muk Hwang, “Uniqueness of equivariant compactifications of $mathbb{C}^n$ by a Fano manifold of Picard number $1$”, Math. Res. Lett., 21:1 (2014), 121–125
- Baohua Fu, Jun-Muk Hwang, “Special birational transformations of type $(2,1)$”, J. Algebraic Geom., 27:1 (2018), 55–89
- Baohua Fu, Jun-Muk Hwang, “Euler-symmetric projective varieties”, Algebr. Geom., 7:3 (2020), 377–389
- Baohua Fu, P. Montero, “Equivariant compactifications of vector groups with high index”, C. R. Math. Acad. Sci. Paris, 357:5 (2019), 455–461
- W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
- M. Furushima, “The complete classification of compactifications of $mathbb{C}^3$ which are projective manifolds with the second Betti number one”, Math. Ann., 297:4 (1993), 627–662
- M. Gerstenhaber, “On dominance and varieties of commuting matrices”, Ann. of Math. (2), 73:2 (1961), 324–348
- N. Gonciulea, V. Lakshmibai, “Degenerations of flag and Schubert varieties to toric varieties”, Transform. Groups, 1:3 (1996), 215–248
- M. Gromov, “Oka's principle for holomorphic sections of elliptic bundles”, J. Amer. Math. Soc., 2:4 (1989), 851–897
- R. M. Guralnick, B. A. Sethuraman, “Commuting pairs and triples of matrices and related varieties”, Linear Algebra Appl., 310:1-3 (2000), 139–148
- D. Handelman, Commutative nilpotent matrix subalgebras, Master Thesis, Faculty of Graduate Studies and Research, Dep. of Math., McGill Univ., Montreal, 1973
- B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of $mathbf{G}_a^n$”, Int. Math. Res. Not. IMRN, 1999:22 (1999), 1211–1230
- J. Hausen, T. Hummel, The automorphism group of a rational projective $mathbb{K}^*$-surface, 2020, 64 pp.
- F. Hirzebruch, “Some problems on differentiable and complex manifolds”, Ann. of Math. (2), 60:2 (1954), 213–236
- Zhizhong Huang, P. Montero, “Fano threefolds as equivariant compactifications of the vector group”, Michigan Math. J., 69:2 (2020), 341–368
- Дж. Хамфри, Линейные алгебраические группы, Наука, М., 1980, 400 с.
- V. Hussin, P. Winternitz, H. Zassenhaus, “Maximal abelian subalgebras of complex orthogonal Lie algebras”, Linear Algebra Appl., 141 (1990), 183–220
- Jun-Muk Hwang, “Geometry of minimal rational curves on Fano manifolds”, School on vanishing theorems and effective results in algebraic geometry (Trieste, 2000), ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, 335–393
- A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc., 10, № 188, Amer. Math. Soc., Providence, RI, 1977, viii+112 pp.
- A. Iarrobino, “Hilbert scheme of points: overview of last ten years”, Algebraic geometry, Bowdoin, 1985 (Brunswick, ME, 1985), Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, 297–320
- A. A. Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, Mem. Amer. Math. Soc., 107, № 514, Amer. Math. Soc., Providence, RI, 1994, viii+115 pp.
- A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Math., 1721, Springer-Verlag, Berlin, 1999, xxxii+345 pp.
- N. Jacobson, “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50:6 (1944), 431–436
- J. Jelisiejew, “Classifying local Artinian Gorenstein algebras”, Collect. Math., 68:1 (2017), 101–127
- F. Knop, H. Kraft, D. Luna, T. Vust, “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75
- F. Knop, H. Lange, “Commutative algebraic groups and intersections of quadrics”, Math. Ann., 267:4 (1984), 555–571
- T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212
- T. J. Laffey, S. Lazarus, “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273
- V. Lakshmibai, “Degenerations of flag varieties to toric varieties”, C. R. Acad. Sci. Paris Ser. I Math., 321:9 (1995), 1229–1234
- A. Liendo, “Affine $mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425
- A. Liendo, C. Petitjean, “Uniformly rational varieties with torus action”, Transform. Groups, 24:1 (2019), 149–153
- Yingqi Liu, “Additive actions on hyperquadrics of corank two”, Electron. Res. Arch., 30:1 (2022), 1–34
- K. Loginov, “Hilbert–Samuel sequences of homogeneous finite type”, J. Pure Appl. Algebra, 221:4 (2017), 821–831
- D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245
- Zhijun Luo, Euler-symmetric complete intersections in projective space, 2022, 16 pp.
- F. S. Macaulay, The algebraic theory of modular systems, Cambridge Univ. Press, Cambridge, 1916, xiv+112 pp.
- H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/64), 347–361
- G. Mazzola, “Generic finite schemes and Hochschild cocycles”, Comment. Math. Helv., 55 (1980), 267–293
- M. Nagaoka, “$mathbb{G}_a^3$-structures on del Pezzo fibrations”, Michigan Math. J., 2021, 1–10, Publ. online
- H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., 18, Amer. Math. Soc., Providence, RI, 1999, xii+132 pp.
- T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Transl. from the Japan., Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp.
- А. Л. Онищик, “Отношения включения между транзитивными компактными группами преобразований”, Тр. ММО, 11, ГИФМЛ, М., 1962, 199–242
- E. Peyre, “Points de hauteur bornee et geometrie des varietes (d'après Y. Manin et al.)”, Seminaire Bourbaki, v. 2000/2001, Asterisque, 282, Soc. Math. France, Paris, 2002, Exp. No. 891, ix, 323–344
- B. Poonen, “Isomorphism types of commutative algebras of finite rank over an algebraically closed field”, Computational arithmetic geometry, Contemp. Math., 463, Amer. Math. Soc., Providence, RI, 2008, 111–120
- Э. Б. Винберг, В. Л. Попов, “Теория инвариантов”, Алгебраическая геометрия – 4, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309
- Yu. Prokhorov, M. Zaidenberg, “Fano–Mukai fourfolds of genus $10$ as compactifications of $mathbb{C}^4$”, Eur. J. Math., 4:3 (2018), 1197–1263
- R. Richardson, G. Röhrle, R. Steinberg, “Parabolic subgroups with Abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671
- I. Schur, “Zur Theorie der vertauschbären Matrizen”, J. Reine Angew. Math., 1905:130 (1905), 66–76
- A. Shafarevich, “Additive actions on toric projective hypersurfaces”, Results Math., 76:3 (2021), 145, 18 pp.
- A. Shafarevich, Euler-symmetric projective toric varieties and additive actions, 2021, 11 pp.
- К. В. Шахматов, “Гладкие непроективные эквивариантные пополнения аффинного пространства”, Матем. заметки, 109:6 (2021), 929–937
- J. Shalika, Yu. Tschinkel, “Height zeta functions of equivariant compactifications of unipotent groups”, Comm. Pure Appl. Math., 69:4 (2016), 693–733
- Е. В. Шаройко, “Соответствие Хассетта–Чинкеля и автоморфизмы квадрики”, Матем. сб., 200:11 (2009), 145–160
- Young-Kwon Song, “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250
- Д. А. Супруненко, Р. И. Тышкевич, Перестановочные матрицы, Наука и техника, Минск, 1966, 104 с.
- Sho Tanimoto, Yu. Tschinkel, “Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups”, Zeta functions in algebra and geometry, Contemp. Math., 566, Amer. Math. Soc., Providence, RI, 2012, 119–157
- D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
- J. Tits, “Espaces homogènes complexes compacts”, Comment. Math. Helv., 37 (1962), 111–120
- A. R. Wadsworth, “The algebra generated by two commuting matrices”, Linear Multilinear Algebra, 27:3 (1990), 159–162
Supplementary files
