What do Abelian categories form?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Given two finitely presentable Abelian categories $A$ and $B$, we outline a construction of an Abelian category of functors from $A$ to $B$, which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of $A$ and $B$. The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology.Bibliography: 29 titles.

About the authors

Dmitry Borisovich Kaledin

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: kaledin@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. M. Artin, A. Grothendieck, J. L. Verdier (eds.), Theorie de topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4). Dirige par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, xix+525 pp.
  2. A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Asterisque, 100, Soc. Math. France, Paris, 1982, 5–171
  3. A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2 (1976/77), 207–220
  4. И. Букур, А. Деляну, Введение в теорию категорий и функторов, Мир, М., 1972, 259 с.
  5. P. Deligne, “Theorie de Hodge. III”, Inst. Hautes Etudes Sci. Publ. Math., 44 (1974), 5–77
  6. A. Dold, “Homology of symmetric products and other functors of complexes”, Ann. of Math. (2), 68 (1958), 54–80
  7. W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, J. H. Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys Monogr., 113, Amer. Math. Soc., Providence, RI, 2004, viii+181 pp.
  8. W. G. Dwyer, J. Spalinski, “Homotopy theories and model categories”, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, 73–126
  9. С. И. Гельфанд, Ю. И. Манин, Методы гомологической алгебры, т. I, Наука, М., 1988, 416 с.
  10. А. Гротендик, О некоторых вопросах гомологической алгебры, Библиотека сборника “Математика”, ИЛ, М., 1961, 175 с.
  11. A. Grothendieck, “Categories fibrees et descente”, Revêtements etales et groupe fondamental, Seminaire de geometrie algebrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math., 224, Springer-Verlag, Berlin–New York, 1971, Exp. VI, 145–194
  12. M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999, xii+209 pp.
  13. M. Jibladze, T. Pirashvili, “Cohomology of algebraic theories”, J. Algebra, 137:2 (1991), 253–296
  14. П. Т. Джонстон, Теория топосов, Наука, М., 1986, 439 с.
  15. D. Kaledin, “Trace theories and localization”, Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015, 227–262
  16. D. Kaledin, “How to glue derived categories”, Bull. Math. Sci., 8:3 (2018), 477–602
  17. Д. Б. Каледин, “Сопряженность в 2-категориях”, УМН, 75:5(455) (2020), 101–152
  18. D. Kaledin, W. Lowen, “Cohomology of exact categories and (non-)additive sheaves”, Adv. Math., 272 (2015), 652–698
  19. M. Kashiwara, P. Schapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006, x+497 pp.
  20. B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 151–190
  21. M. Kontsevich, Y. Soibelman, “Notes on $A_infty$-algebras, $A_infty$-categories and non-commutative geometry”, Homological mirror symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 153–219
  22. W. Lowen, M. Van den Bergh, “Deformation theory of abelian categories”, Trans. Amer. Math. Soc., 358:12 (2006), 5441–5483
  23. D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 1967, iv+156 pp.
  24. D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147
  25. D. Schäppi, “Ind-abelian categories and quasi-coherent sheaves”, Math. Proc. Cambridge Philos. Soc., 157:3 (2014), 391–423
  26. D. Tamarkin, “What do dg-categories form?”, Compos. Math., 143:5 (2007), 1335–1358
  27. J. L. Verdier, “Topologies et faisceaux”, Exp. II, Theorie de topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, 219–263
  28. J.-L. Verdier, Des categories derivees des categories abeliennes, With a preface by L. Illusie, edited and with a note by G. Maltsiniotis, Asterisque, 239, Soc. Math. France, Paris, 1996, xii+253 pp.
  29. Ch. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994, xiv+450 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Kaledin D.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).