Classification of non-Kähler surfaces and locally conformally Kähler geometry
- Authors: Verbitsky M.S.1,2, Vuletescu V.3, Ornea L.3,4
-
Affiliations:
- Instituto Nacional de Matemática Pura e Aplicada
- HSE University
- University of Bucharest
- Institute of Mathematics "Simion Stoilow" of the Romanian Academy
- Issue: Vol 76, No 2 (2021)
- Pages: 71-102
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133649
- DOI: https://doi.org/10.4213/rm9858
- ID: 133649
Cite item
Abstract
About the authors
Mikhail Sergeevich Verbitsky
Instituto Nacional de Matemática Pura e Aplicada; HSE University
Email: verbit@impa.br
Victor Vuletescu
University of Bucharest
Liviu Ornea
University of Bucharest; Institute of Mathematics "Simion Stoilow" of the Romanian Academy
References
- D. Angella, A. Tomassini, M. Verbitsky, “On non-Kähler degrees of complex manifolds”, Adv. Geom., 19:1 (2019), 65–69
- V. Apostolov, G. Dloussky, “On the Lee classes of locally conformally symplectic complex surfaces”, J. Symplectic Geom., 16:4 (2018), 931–958
- D. Barlet, Gauduchon's form and compactness of the space of divisors, 2017, 12 pp.
- D. Barlet, J. Magnusson, Cycles analytiques complexes, v. I, Cours Spec., 22, Theorèmes de preparation des cycles, Soc. Math. France, Paris, 2014, 525 pp.
- W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
- F. A. Belgun, “On the metric structure of non-Kähler complex surfaces”, Math. Ann., 317:1 (2000), 1–40
- А. Бессе, Многообразия Эйнштейна, Мир, М., 1990, 704 с.
- E. Bishop, “Conditions for the analyticity of certain sets”, Michigan Math. J., 11:4 (1964), 289–304
- A. Blanchard, “Sur les varietes analytiques complexes”, Ann. Sci. Ecole Norm. Sup. (3), 73:2 (1956), 157–202
- Ф. А. Богомолов, “Классификация поверхностей класса $mathrm{VII}_0$ с $b_2=0$”, Изв. АН СССР. Сер. матем., 40:2 (1976), 273–288
- Ф. А. Богомолов, “Поверхности класса $mathrm{VII}_0$ и аффинная геометрия”, Изв. АН СССР. Сер. матем., 46:4 (1982), 710–761
- V. Brînzănescu, “Neron-Severi group for nonalgebraic elliptic surfaces. II. Non-kählerian case”, Manuscripta Math., 84:3-4 (1994), 415–420
- V. Brînzănescu, Holomorphic vector bundles over compact complex surfaces, Lecture Notes in Math., 1624, Springer-Verlag, Berlin, 1996, x+170 pp.
- V. Brînzănescu, P. Flondor, “Holomorphic 2-vector bundles on nonalgebraic 2-tori”, J. Reine Angew. Math., 1985:363 (1985), 47–58
- V. Brînzănescu, P. Flondor, “Quadratic intersection form and 2-vector bundles on nonalgebraic surfaces”, Proceedings of the conference on algebraic geometry (Berlin, 1985), Teubner-Texte Math., 92, Teubner, Leipzig, 1986, 53–64
- M. Brunella, “Locally conformally Kähler metrics on certain non-Kählerian surfaces”, Math. Ann., 346:3 (2010), 629–639
- M. Brunella, “Locally conformally Kähler metrics on Kato surfaces”, Nagoya Math. J., 202 (2011), 77–81
- N. Buchdahl, “On compact Kähler surfaces”, Ann. Inst. Fourier (Grenoble), 49:1 (1999), 287–302
- C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290
- J.-P. Demailly, “Estimations $L^2$ pour l'operateur $barpartial$ d'un fibre vectoriel holomorphe semi-positif au-dessus d'une variete kählerienne complète”, Ann. Sci. Ecole Norm. Sup. (4), 15:3 (1982), 457–511
- J.-P. Demailly, Complex analytic and differential geometry, 2012, 455 pp.par
- G. Dloussky, Structure des surfaces de Kato, Mem. Soc. Math. France (N. S.), 14, Soc. Math. France, Paris, 1984, ii+120 pp.
- G. Dloussky, K. Oeljeklaus, M. Toma, “Class $mathrm{VII}_0$ surfaces with {$b_2$} curves”, Tohoku Math. J. (2), 55:2 (2003), 283–309
- S. Dragomir, L. Ornea, Locally conformal Kähler manifolds, Progr. Math., 155, Birkhäuser Boston, Inc., Boston, MA, 1998, xiv+327 pp.
- W. Fischer, H. Grauert, “Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1965 (1965), 89–94
- A. Fujiki, M. Pontecorvo, “Anti-self-dual bihermitian structures on Inoue surfaces”, J. Differential Geom., 85:1 (2010), 15–72
- A. Fujiki, M. Pontecorvo, “Twistors and bi-Hermitian surfaces of non-Kähler type”, SIGMA, 10 (2014), 042, 13 pp.
- A. Fujiki, M. Pontecorvo, “Bi-Hermitian metrics on Kato surfaces”, J. Geom. Phys., 138 (2019), 33–43
- P. Gauduchon, “La 1-forme de torsion d'une variete hermitienne compacte”, Math. Ann., 267:4 (1984), 495–518
- P. Gauduchon, L. Ornea, “Locally conformally Kähler metrics on Hopf surfaces”, Ann. Inst. Fourier (Grenoble), 48:4 (1998), 1107–1127
- H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472
- P. A. Griffiths (ed.), Topics in transcendental algebraic geometry, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, viii+316 pp.
- T. Höfer, “Remarks on torus principal bundles”, J. Math. Kyoto Univ., 33:1 (1993), 227–259
- N. Istrati, A. Otiman, M. Pontecorvo, “On a class of Kato manifolds”, Int. Math. Res. Not. IMRN, 2020, rnz354
- S. Ivashkovich, “Extension properties of meromorphic mappings with values in non-Kähler manifolds”, Ann. of Math. (2), 160:3 (2004), 795–837
- D. Kaledin, M. Verbitsky, “Non-Hermitian Yang–Mills connections”, Selecta Math. (N. S.), 4:2 (1998), 279–320
- Y. Kamishima, L. Ornea, “Geometric flow on compact locally conformally Kähler manifolds”, Tohoku Math. J. (2), 57:2 (2005), 201–221
- Ma. Kato, “Compact complex manifolds containing “global” spherical shells”, Proc. Japan Acad., 53:1 (1977), 15–16
- Ma. Kato, “Compact complex manifolds containing “global” spherical shells. I”, Proceedings of the international symposium on algebraic geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 45–84
- Ma. Kato, “On a certain class of non-algebraic non-Kähler compact complex manifolds”, Recent progress of algebraic geometry in Japan, North-Holland Math. Stud., 73, North-Holland, Amsterdam, 1983, 28–50
- K. Kodaira, D. C. Spencer, “On deformations of complex analytic structures. III. Stability theorems for complex structures”, Ann. of Math. (2), 71 (1960), 43–76
- A. Lamari, “Courants kähleriens et surfaces compactes”, Ann. Inst. Fourier (Grenoble), 49:1 (1999), 263–285
- J. Li, S.-T. Yau, F. Zheng, “On projectively flat Hermitian manifolds”, Comm. Anal. Geom., 2:1 (1994), 103–109
- A. C. Lopez-Martin, “Relative Jacobians of elliptic fibrations with reducible fibers”, J. Geom. Phys., 56:3 (2006), 375–385
- D. R. Morrison, “The Clemens–Schmid exact sequence and applications”, Topics in transcendental algebraic geometry (Princeton, NJ, 1981/1982), Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, 101–119
- I. Nakamura, “Classification of non-Kählerian surfaces”, Sugaku Expo., 2:2 (1989), 209–229
- I. Nakamura, “On surfaces of class $mathrm{VII}_0$ with curves. II”, Tohoku Math. J. (2), 42:4 (1990), 475–516
- L. Ornea, M. Verbitsky, “Locally conformally Kähler metrics obtained from pseudoconvex shells”, Proc. Amer. Math. Soc., 144:1 (2016), 325–335
- U. Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc., 11, № 189, Amer. Math. Soc., Providence, RI, 1977, xv+144 pp.
- R. Remmert, “Sur les espaces analytiques holomorphiquement separables et holomorphiquement convexes”, C. R. Acad. Sci. Paris, 243 (1956), 118–121
- V. Rogov, Kähler submanifolds in Iwasawa manifolds, 2018 (v1 – 2017), 18 pp.
- W. Schmid, “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math., 22 (1973), 211–319
- A.-D. Teleman, “Projectively flat surfaces and Bogomolov's theorem on class $mathrm{VII}_0$ surfaces”, Internat. J. Math., 5:2 (1994), 253–264
- A. Teleman, “Donaldson theory on non-Kählerian surfaces and class VII surfaces with $b_2=1$”, Invent. Math., 162:3 (2005), 493–521
- A. Teleman, “The pseudo-effective cone of a non-Kählerian surface and applications”, Math. Ann., 335:4 (2006), 965–989
- A. Teleman, “Instantons and curves on class VII surfaces”, Ann. of Math. (2), 172:3 (2010), 1749–1804
- F. Tricceri, “Some examples of locally conformal Kähler manifolds”, Rend. Sem. Mat. Univ. Politec. Torino, 40:1 (1982), 81–92
- I. Vaisman, “A geometric condition for an l.c.K. manifold to be Kähler”, Geom. Dedicata, 10:1-4 (1981), 129–134
- I. Vaisman, “Generalized Hopf manifolds”, Geom. Dedicata, 13:3 (1982), 231–255
- M. Verbitsky, “Pseudoholomorphic curves on nearly Kähler manifolds”, Comm. Math. Phys., 324:1 (2013), 173–177
- M. Verbitsky, “Rational curves and special metrics on twistor spaces”, Geom. Topol., 18:2 (2014), 897–909
- C. Voisin, Hodge theory and complex algebraic geometry, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp.
- V. Vuletescu, “Blowing-up points on l.c.K. manifolds”, Bull. Math. Soc. Sci. Math. Roumanie (N. S.), 52(100):3 (2009), 387–390
- V. Vuletescu, LCK metrics on elliptic principal bundles, 2010, 5 pp.
Supplementary files
