Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves
- Authors: Bondal A.I.1,2,3,4, Zhdanovskiy I.Y.2,5
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- HSE University
- Kavli Institute for the Physics and Mathematics of the Universe
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Issue: Vol 76, No 2 (2021)
- Pages: 3-70
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133648
- DOI: https://doi.org/10.4213/rm9983
- ID: 133648
Cite item
Abstract
About the authors
Alexey Igorevich Bondal
Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); HSE University; Kavli Institute for the Physics and Mathematics of the Universe
Email: bondal@mi-ras.ru
Doctor of physico-mathematical sciences
Il'ya Yur'evich Zhdanovskiy
Moscow Institute of Physics and Technology (National Research University); Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
Email: ijdanov@mail.ru
Candidate of physico-mathematical sciences
References
- A. A. Beilinson, “How to glue perverse sheaves”, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 42–51
- A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Asterisque, 100, Soc. Math. France, Paris, 1982, 5–171
- C. H. Bennett, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, Proceedings of international conference on computers systems and signal processing (Bangalore, India, 1984), IEEE, 1984, 175–179
- R. Bezrukavnikov, M. Kapranov, “Microlocal sheaves and quiver varieties”, Ann. Fac. Sci. Toulouse Math. (6), 25:2-3 (2016), 473–516
- А. И. Бондал, “Представления ассоциативных алгебр и когерентные пучки”, Изв. АН СССР. Сер. матем., 53:1 (1989), 25–44
- А. И. Бондал, М. М. Капранов, “Оснащенные триангулированные категории”, Матем. сб., 181:5 (1990), 669–683
- A. Bondal, M. Kapranov, V. Schechtman, “Perverse schobers and birational geometry”, Selecta Math. (N. S.), 24:1 (2018), 85–143
- A. I. Bondal, M. Larsen, V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495
- A. Bondal, T. Logvinenko, Perverse schobers and orbifolds, preprint
- A. Bondal, I. Zhdanovskiy, “Coherence of relatively quasi-free algebras”, Eur. J. Math., 1:4 (2015), 695–703
- A. Bondal, I. Zhdanovskiy, “Symplectic geometry of unbiasedness and critical points of a potential”, Primitive forms and related subjects – Kavli IPMU 2014, Adv. Stud. Pure Math., 83, Math. Soc. Japan, Tokyo, 2019, 1–18
- A. Bondal, I. Zhdanovskiy, “Ortogonal pairs and mutually unbiased bases”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. науч. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 35–61
- P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras”, Quantum Inf. Comput., 7:4 (2007), 371–382
- W. P. Brown, “Generalized matrix algebras”, Canad. J. Math., 7 (1955), 188–190
- A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, “Quantum error correction and orthogonal geometry”, Phys. Rev. Lett., 78:3 (1997), 405–408
- S. U. Chase, “Direct products of modules”, Trans. Amer. Math. Soc., 97:3 (1960), 457–473
- J. Cuntz, D. Quillen, “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8:2 (1995), 251–289
- P. Deligne, “Le formalisme des cycles evanescents”, Groupes de monodromie en geometrie algebrique, Seminaire de geometrie algebrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, 82–115
- V. Dlab, C. M. Ringel, “Quasi-hereditary algebras”, Illinois J. Math., 33:2 (1989), 280–291
- W. Donovan, “Perverse schobers and wall crossing”, Int. Math. Res. Not. IMRN, 2019:18 (2019), 5777–5810
- А. И. Ефимов, “О гомотопической конечности DG-категорий”, УМН, 74:3(447) (2019), 63–94
- B.-G. Englert, Ya. Aharonov, “The mean king's problem: prime degrees of freedom”, Phys. Lett. A, 284:1 (2001), 1–5
- S. N. Filippov, V. I. Man'ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme”, Phys. Scr., 2011:T143 (2011), 014010, 6 pp.
- V. Franjou, T. Pirashvili, “Comparison of abelian categories recollements”, Doc. Math., 9 (2004), 41–56
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246
- С. И. Гельфанд, Ю. И. Манин, Методы гомологической алгебры, т. I, Наука, М., 1988, 416 с.
- D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound”, Phys. Rev. A (3), 54:3 (1996), 1862–1868
- U. Haagerup, “Orthogonal maximal abelian $*$-subalgebras of the $n times n$ matrices and cyclic $n$-roots”, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, 296–322
- A. Harder, L. Katzarkov, “Perverse sheaves of categories and some applications”, Adv. Math., 352 (2019), 1155–1205
- Y. Huang, “Entanglement criteria via concave-function uncertainty relations”, Phys. Rev. A, 82:1 (2010), 012335
- I. D. Ivonovic, “Geometrical description of quantal state determination”, J. Phys. A, 14:12 (1981), 3241–3245
- N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp.
- V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math. (2), 126:2 (1987), 335–388
- M. Kapranov, V. Schechtman, Perverse schobers, 2015 (v1 – 2014), 36 pp.
- M. Kapranov, V. Schechtman, “Perverse sheaves over real hyperplane arrangements”, Ann. of Math. (2), 183:2 (2016), 619–679
- M. Kapranov, V. Schechtman, Perverse sheaves and graphs on surfaces, 2016, 19 pp.
- A. S. Kocherova, I. Yu. Zhdanovskiy, “On the algebra generated by projectors with commutator relation”, Lobachevskii J. Math., 38:4 (2017), 670–687
- А. И. Кострикин, И. А. Кострикин, В. А. Уфнаровский, “Ортогональные разложения простых алгебр Ли (тип $A_n$)”, Аналитическая теория чисел, математический анализ и их приложения, Сборник статей. Посвящается академику Ивану Матвеевичу Виноградову к его девяностолетию, Тр. МИАН СССР, 158, 1981, 105–120
- А. И. Кострикин, И. А. Кострикин, В. А. Уфнаровский, “К вопросу об однозначности ортогональных разложений алгебр Ли типов $A_n$ и $C_n$. I, II”, Исследования по алгебре и топологии, Матем. исслед., 74, Штиинца, Кишинев, 1983, 80–105, 106–116
- A. I. Kostrikin, P. H. Tiep, Orthogonal decompositions and integral lattices, De Gruyter Exp. Math., 15, Walter de Gruyter & Co., Berlin, 1994, x+535 pp.
- N. J. Kuhn, “Generic representations of the finite general linear groups and the Steenrod algebra. II”, K-theory, 8:4 (1994), 395–428
- A. Kuznetsov, V. A. Lunts, “Categorical resolutions of irrational singularities”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4536–4625
- M. Matolcsi, F. Szöllősi, “Towards a classification of $6 times 6$ complex Hadamard matrices”, Open Syst. Inf. Dyn., 15:2 (2008), 93–108
- R. Nicoară, “A finiteness result for commuting squares of matrix algebras”, J. Operator Theory, 55:2 (2006), 295–310
- D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105
- M. Petrescu, Existence of continuous families of complex Hadamard matrices of certain prime dimensions and related results, PhD thesis, Univ. of California, Los Angeles, 1997, 106 pp.
- S. Popa, “Orthogonal pairs of $*$-subalgebras in finite von Neumann algebras”, J. Operator Theory, 9:2 (1983), 253–268
- M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM's in quantum information theory”, Acta Appl. Math., 108:3 (2009), 709–719
- V. Schechtman, “Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, …)”, Ann. Fac. Sci. Toulouse Math. (6), 22:2 (2013), 353–375
- J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. U.S.A., 46:4 (1960), 570–579
- F. Szöllősi, “Complex Hadamard matrices of order 6: a four-parameter family”, J. Lond. Math. Soc. (2), 85:3 (2012), 616–632
- W. Tadej, K. Życzkowski, “Defect of a unitary matrix”, Linear Algebra Appl., 429:2-3 (2008), 447–481
- L. Vaidman, Ya. Aharonov, D. Z. Albert, “How to ascertain the values of $sigma_{x}$, $sigma_{y}$ and $sigma_{z}$ of a spin-1/2 particle”, Phys. Rev. Lett., 58:14 (1987), 1385–1387
- W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Ann. Physics, 191:2 (1989), 363–381
- I. Yu. Zhdanovskiy, “Homotopes of finite-dimensional algebras”, Comm. Algebra, 49:1 (2020), 43–57
- И. Ю. Ждановский, А. С. Кочерова, “Алгебры проекторов и взаимно несмещенные базисы в размерности 7”, Квантовые вычисления, Итоги науки и техн. Сер. Соврем. матем. и ее прил. Темат. обз., 138, ВИНИТИ РАН, М., 2017, 19–49
Supplementary files
