Adjunction in 2-categories

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the paper is to introduce an approach to the theory of 2-categories which is based on systematic use of the Grothendieck construction and the Segal Machine and to show how adjunction questions can be investigated by means of this approach and what its connections are with more traditional approaches. As an application, the derived Morita 2-category and the Fourier–Mukai 2-category over a Noetherian ring are constructed and the embedding of the latter in the former is demonstrated.Bibliography: 15 titles.

About the authors

Dmitry Borisovich Kaledin

Steklov Mathematical Institute of Russian Academy of Sciences; HSE University

Email: kaledin@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. R. Anno, T. Logvinenko, “Spherical DG-functors”, J. Eur. Math. Soc. (JEMS), 19:9 (2017), 2577–2656
  2. R. Anno, T. Logvinenko, $mathbb{P}^n$-functors, 2019, 80 pp.
  3. J. Benabou, “Introduction to bicategories”, Reports of the Midwest category seminar, Lecture Notes in Math., 47, Springer, Berlin, 1967, 1–77
  4. A. I. Bondal, M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
  5. A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2 (1976/77), 207–220
  6. P. Deligne, J. S. Milne, “Tannakian categories”, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, Berlin–New York, 1982, 101–228
  7. A. Grothendieck, “Categories fibree et descente”, Revêtements etales et groupe fondamental (SGA 1), Seminaire de geometrie algebrique du Bois Marie 1960–61, Doc. Math. (Paris), 3, 2nd ed., Soc. Math. France, Paris, 2003, Exp. VI, 119–151
  8. V. Hinich, “Homological algebra of homotopy algebras”, Comm. Algebra, 25:10 (1997), 3291–3323
  9. D. Kaledin, “Trace theories and localization”, Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015, 227–262
  10. Д. Каледин, “Вектора Витта, коммутативные и некоммутативные”, УМН, 73:1(439) (2018), 3–34
  11. D. Kaledin, Trace theories, Bökstedt periodicity and Bott periodicity, 2020, 210 pp.
  12. B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 151–190
  13. S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, 2nd ed., Springer-Verlag, New York, 1998, xii+314 pp.
  14. D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105
  15. G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Kaledin D.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).