Adjunction in 2-categories
- Authors: Kaledin D.B.1,2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- HSE University
- Issue: Vol 75, No 5 (2020)
- Pages: 101-152
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133629
- DOI: https://doi.org/10.4213/rm9963
- ID: 133629
Cite item
Abstract
The aim of the paper is to introduce an approach to the theory of 2-categories which is based on systematic use of the Grothendieck construction and the Segal Machine and to show how adjunction questions can be investigated by means of this approach and what its connections are with more traditional approaches. As an application, the derived Morita 2-category and the Fourier–Mukai 2-category over a Noetherian ring are constructed and the embedding of the latter in the former is demonstrated.Bibliography: 15 titles.
Keywords
About the authors
Dmitry Borisovich Kaledin
Steklov Mathematical Institute of Russian Academy of Sciences; HSE University
Email: kaledin@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- R. Anno, T. Logvinenko, “Spherical DG-functors”, J. Eur. Math. Soc. (JEMS), 19:9 (2017), 2577–2656
- R. Anno, T. Logvinenko, $mathbb{P}^n$-functors, 2019, 80 pp.
- J. Benabou, “Introduction to bicategories”, Reports of the Midwest category seminar, Lecture Notes in Math., 47, Springer, Berlin, 1967, 1–77
- A. I. Bondal, M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
- A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2 (1976/77), 207–220
- P. Deligne, J. S. Milne, “Tannakian categories”, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, Berlin–New York, 1982, 101–228
- A. Grothendieck, “Categories fibree et descente”, Revêtements etales et groupe fondamental (SGA 1), Seminaire de geometrie algebrique du Bois Marie 1960–61, Doc. Math. (Paris), 3, 2nd ed., Soc. Math. France, Paris, 2003, Exp. VI, 119–151
- V. Hinich, “Homological algebra of homotopy algebras”, Comm. Algebra, 25:10 (1997), 3291–3323
- D. Kaledin, “Trace theories and localization”, Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015, 227–262
- Д. Каледин, “Вектора Витта, коммутативные и некоммутативные”, УМН, 73:1(439) (2018), 3–34
- D. Kaledin, Trace theories, Bökstedt periodicity and Bott periodicity, 2020, 210 pp.
- B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 151–190
- S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, 2nd ed., Springer-Verlag, New York, 1998, xii+314 pp.
- D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105
- G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312
Supplementary files
