Attractors of nonlinear Hamiltonian partial differential equations
- Authors: Komech A.I.1, Kopylova E.A.1
-
Affiliations:
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Issue: Vol 75, No 1 (2020)
- Pages: 3-94
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133586
- DOI: https://doi.org/10.4213/rm9900
- ID: 133586
Cite item
Abstract
This is a survey of the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. Included are results on global attraction to stationary states, to solitons, and to stationary orbits, together with results on adiabatic effective dynamics of solitons and their asymptotic stability, and also results on numerical simulation. The results obtained are generalized in the formulation of a new general conjecture on attractors of $G$-invariant nonlinear Hamiltonian partial differential equations. This conjecture suggests a novel dynamical interpretation of basic quantum phenomena: Bohr transitions between quantum stationary states, de Broglie's wave-particle duality, and Born's probabilistic interpretation.Bibliography: 212 titles.
Keywords
Hamiltonian equations, nonlinear partial differential equations, wave equation, Maxwell equations, Klein–Gordon equation, limiting amplitude principle, limiting absorption principle, attractor, steady states, soliton, stationary orbits, adiabatic effective dynamics, symmetry group, Lie group, Schrödinger equation, quantum transitions, wave-particle duality
About the authors
Aleksandr Il'ich Komech
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: alexander.komech@univie.ac.at
Doctor of physico-mathematical sciences, Professor
Elena Andreevna Kopylova
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: elena.kopylova@univie.ac.at
References
- M. Abraham, “Prinzipien der Dynamik des Elektrons”, Phys. Z., 4 (1902), 57–63
- M. Abraham, Theorie der Elektrizität, v. 2, Elektromagnetische Theorie der Strahlung, B. G. Teubner, Leipzig, 1905, 404 pp.
- R. K. Adair, E. C. Fowler, Strange particles, Intersci. Publ. John Wiley & Sons, New York–London, 1963, viii+151 pp.
- R. Adami, D. Noja, C. Ortoleva, “Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three”, J. Math. Phys., 54:1 (2013), 013501, 33 pp.
- S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218
- S. Albeverio, R. Figari, “Quantum fields and point interactions”, Rend. Mat. Appl. (7), 39:2 (2018), 161–180
- L. Andersson, P. Blue, “Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior”, J. Hyperbolic Differ. Equ., 12:4 (2015), 689–743
- А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
- V. Bach, T. Chen, J. Faupin, J. Fröhlich, I. M. Sigal, “Effective dynamics of an electron coupled to an external potential in non-relativistic QED”, Ann. Henri Poincare, 14:6 (2013), 1573–1597
- D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math., 133:5 (2011), 1421–1468
- D. Bambusi, L. Galgani, “Some rigorous results on the Pauli–Fierz model of classical electrodynamics”, Ann. Inst. H. Poincare Phys. Theor., 58:2 (1993), 155–171
- V. E. Barnes et al., “Observation of a hyperon with strangeness minus three”, Phys. Rev. Lett., 12:8 (1964), 204–206
- M. Beals, W. Strauss, “$L^p$ estimates for the wave equation with a potential”, Comm. Partial Differential Equations, 18:7-8 (1993), 1365–1397
- M. Beceanu, M. Goldberg, “Schrödinger dispersive estimates for a scaling-critical class of potentials”, Comm. Math. Phys., 314:2 (2012), 471–481
- M. Beceanu, M. Goldberg, “Strichartz estimates and maximal operators for the wave equation in $mathbb{R}^3$”, J. Funct. Anal., 266:3 (2014), 1476–1510
- A. Bensoussan, C. Iliine, A. Komech, “Breathers for a relativistic nonlinear wave equation”, Arch. Ration. Mech. Anal., 165:4 (2002), 317–345
- H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Ration. Mech. Anal., 82:4 (1983), 313–345
- H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. II. Existence of infinitely many solutions”, Arch. Ration. Mech. Anal., 82:4 (1983), 347–375
- Ф. А. Березин, Л. Д. Фаддеев, “Замечание об уравнении Шредингера с сингулярным потенциалом”, Докл. АН СССР, 137:5 (1961), 1011–1014
- N. Bohr, “On the constitution of atoms and molecules. I”, Philos. Mag. (6), 26:151 (1913), 1–25
- Н. Бор, “Дискуссии с Эйнштейном о проблемах теории познания в атомной физике”, УФН, 66 (1958), 571–598
- N. Boussaid, “Stable directions for small nonlinear Dirac standing waves”, Comm. Math. Phys., 268:3 (2006), 757–817
- N. Boussaid, S. Cuccagna, “On stability of standing waves of nonlinear Dirac equations”, Comm. Partial Differential Equations, 37:6 (2012), 1001–1056
- V. S. Buslaev, A. I. Komech, E. A. Kopylova, D. Stuart, “On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator”, Comm. Partial Differential Equations, 33:4 (2008), 669–705
- В. С. Буслаев, Г. С. Перельман, “Рассеяние для нелинейного уравнения Шрeдингера: состояния, близкие к солитону”, Алгебра и анализ, 4:6 (1992), 63–102
- V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc., Providence, RI, 1995, 75–98
- V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincare Anal. Non Lineaire, 20:3 (2003), 419–475
- V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
- G. M. Coclite, V. Georgiev, “Solitary waves for Maxwell–Schrödinger equations”, Electron. J. Differential Equations, 2004 (2004), 94, 31 pp. (electronic)
- A. Comech, “On global attraction to solitary waves. Klein–Gordon equation with mean field interaction at several points”, J. Differential Equations, 252:10 (2012), 5390–5413
- A. Comech, “Weak attractor of the Klein–Gordon field in discrete space-time interacting with a nonlinear oscillator”, Discrete Contin. Dyn. Syst., 33:7 (2013), 2711–2755
- F. H. J. Cornish, “Classical radiation theory and point charges”, Proc. Phys. Soc., 86:3 (1965), 427–442
- S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145
- S. Cuccagna, “The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states”, Comm. Math. Phys., 305:2 (2011), 279–331
- S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys., 284:1 (2008), 51–77
- M. Dafermos, I. Rodnianski, “A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds”, Invent. Math., 185:3 (2011), 467–559
- P. D'Ancona, “Kato smoothing and Strichartz estimates for wave equations with magnetic potentials”, Comm. Math. Phys., 335:1 (2015), 1–16
- P. D'Ancona, L. Fanelli, L. Vega, N. Visciglia, “Endpoint Strichartz estimates for the magnetic Schrödinger equation”, J. Funct. Anal., 258:10 (2010), 3227–3240
- S. Demoulini, D. Stuart, “Adiabatic limit and the slow motion of vortices in a Chern–Simons–Schrödinger system”, Comm. Math. Phys., 290:2 (2009), 597–632
- P. A. M. Dirac, “Classical theory of radiating electrons”, Proc. Roy. Soc. London Ser. A, 167:929 (1938), 148–169
- R. Donninger, W. Schlag, A. Soffer, “On pointwise decay of linear waves on a Schwarzschild black hole background”, Comm. Math. Phys., 309:1 (2012), 51–86
- T. Duyckaerts, C. Kenig, F. Merle, “Profiles of bounded radial solutions of the focusing, energy-critical wave equation”, Geom. Funct. Anal., 22:3 (2012), 639–698
- T. Duyckaerts, C. Kenig, F. Merle, “Scattering for radial, bounded solutions of focusing supercritical wave equations”, Int. Math. Res. Not. IMRN, 2014:1 (2014), 224–258
- T. Duyckaerts, C. Kenig, F. Merle, “Concentration-compactness and universal profiles for the non-radial energy critical wave equation”, Nonlinear Anal., 138 (2016), 44–82
- А. В. Дымов, “Диссипативные эффекты в одной линейной лагранжевой системе с бесконечным числом степеней свободы”, Изв. РАН. Сер. матем., 76:6 (2012), 45–80
- W. Eckhaus, A. van Harten, The inverse scattering transformation and the theory of solitons. An introduction, North-Holland Math. Stud., 50, North-Holland Publishing Co., Amsterdam–New York, 1981, xi+222 pp.
- И. Е. Егорова, Е. А. Копылова, В. А. Марченко, Г. Тешль, “Об уточнении дисперсионных оценок для одномерных уравнений Шрeдингера и Клейна–Гордона”, УМН, 71:3(429) (2016), 3–26
- I. Egorova, E. A. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Schrödinger and wave equations”, J. Spectr. Theory, 5:4 (2015), 663–696
- A. Einstein, “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?”, Ann. der Phys. (4), 18 (1905), 639–641
- M. B. Erdoğan, M. Goldberg, W. R. Green, “Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy”, Comm. Partial Differential Equations, 39:10 (2014), 1936–1964
- M. J. Esteban, V. Georgiev, E. Sere, “Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations, 4:3 (1996), 265–281
- Р. Фейнман, З. Лейтон, М. Сэндс, Фейнмановские лекции по физике, т. 5, 6, 7, Мир, М., 1977, 302 с., 349 с., 288 с.
- C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp.
- J. Fröhlich, Z. Gang, “Emission of Cherenkov radiation as a mechanism for Hamiltonian friction”, Adv. Math., 264 (2014), 183–235
- J. Fröhlich, S. Gustafson, B. L. G. Jonsson, I. M. Sigal, “Solitary wave dynamics in an external potential”, Comm. Math. Phys., 250:3 (2004), 613–642
- J. Fröhlich, T.-P. Tsai, H.-T. Yau, “On the point-particle (Newtonian) limit of the non-linear Hartree equation”, Comm. Math. Phys., 225:2 (2002), 223–274
- G. I. Gaudry, “Quasimeasures and operators commuting with convolution”, Pacific J. Math., 18:3 (1966), 461–476
- M. Gell-Mann, “Symmetries of baryons and mesons”, Phys. Rev. (2), 125:3 (1962), 1067–1084
- H.-P. Gittel, J. Kijowski, E. Zeidler, “The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics”, Comm. Math. Phys., 198:3 (1998), 711–736
- M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. I. The odd dimensional case”, J. Funct. Anal., 269:3 (2015), 633–682
- M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. II. The even dimensional case”, J. Spectr. Theory, 7:1 (2017), 33–86
- M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197
- M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal., 94:2 (1990), 308–348
- J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
- F. Halzen, A. D. Martin, Quarks and leptons: an introductory course in modern particle physics, John Wiley & Sons, Inc., New York, 1984, xvi+396 pp.
- T. Harada, H. Maeda, “Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity”, Classical Quantum Gravity, 21:2 (2004), 371–389
- A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991, xii+132 pp.
- W. Heisenberg, “Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen”, Acta Phys. Austriaca, 14 (1961), 328–339
- В. Гейзенберг, Введение в единую полевую теорию элементарных частиц, Мир, М., 1968, 240 с.
- Д. Хенри, Геометрическая теория полулинейных параболических уравнений, Мир, М., 1985, 376 с.
- E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231
- L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, 2nd ed., Springer-Verlag, Berlin, 1990, xii+440 pp.
- L. Houllevigue, L'evolution des sciences, Librairie A. Collin, Paris, 1908, xi+287 pp.
- В. М. Имайкин, “Солитонные асимптотики для систем типа ‘поле-частица’ ”, УМН, 68:2(410) (2013), 33–90
- V. Imaykin, A. Komech, P. A. Markowich, “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217
- V. Imaykin, A. Komech, N. Mauser, “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. Henri Poincare, 5:6 (2004), 1117–1135
- V. Imaykin, A. Komech, H. Spohn, “Soliton-type asymptotic and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436
- V. Imaykin, A. Komech, H. Spohn, “Scattering theory for a particle coupled to a scalar field”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 387–396
- V. Imaykin, A. Komech, H. Spohn, “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1-2 (2004), 143–156
- V. Imaykin, A. Komech, H. Spohn, “Scattering asymptotics for a charged particle coupled to the Maxwell field”, J. Math. Phys., 52:4 (2011), 042701, 33 pp.
- V. Imaykin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367
- V. Imaykin, A. Komech, B. Vainberg, “Scattering of solitons for coupled wave-particle equations”, J. Math. Anal. Appl., 389:2 (2012), 713–740
- J. D. Jackson, Classical electrodynamics, 3rd ed., John Wiley & Sons, Inc., New York, 1999, xxi+808 pp.
- A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611
- K. Jörgens, “Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308
- J.-L. Journe, A. Soffer, C. D. Sogge, “Decay estimates for Schrödinger operators”, Comm. Pure Appl. Math., 44:5 (1991), 573–604
- C. Kenig, A. Lawrie, B. Liu, W. Schlag, “Stable soliton resolution for exterior wave maps in all equivariance classes”, Adv. Math., 285 (2015), 235–300
- C. E. Kenig, A. Lawrie, W. Schlag, “Relaxation of wave maps exterior to a ball to harmonic maps for all data”, Geom. Funct. Anal., 24:2 (2014), 610–647
- C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675
- C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math., 201:2 (2008), 147–212
- C. E. Kenig, F. Merle, “Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications”, Amer. J. Math., 133:4 (2011), 1029–1065
- А. А. Комеч, А. И. Комеч, “Вариант теоремы Титчмарша о свертке для распределений на окружности”, Функц. анализ и его прил., 47:1 (2013), 26–32
- А. И. Комеч, “О стабилизации взаимодействия струны с нелинейным осциллятором”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1991, № 6, 35–41
- А. И. Комеч, “Линейные уравнения в частных производных с постоянными коэффициентами”, Дифференциальные уравнения с частными производными – 2, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 31, ВИНИТИ, М., 1988, 127–261
- A. I. Komech, “On stabilization of string-nonlinear oscillator interaction”, J. Math. Anal. Appl., 196:1 (1995), 384–409
- A. I. Komech, “On the stabilization of string-oscillator interaction”, Russ. J. Math. Phys., 3:2 (1995), 227–247
- A. Komech, “On transitions to stationary states in one-dimensional nonlinear wave equations”, Arch. Ration. Mech. Anal., 149:3 (1999), 213–228
- А. И. Комеч, “Аттракторы нелинейных гамильтоновых одномерных волновых уравнений”, УМН, 55:1(331) (2000), 45–98
- A. I. Komech, “On attractor of a singular nonlinear $mathrm U(1)$-invariant Klein–Gordon equation”, Progress in analysis (Berlin, 2001), v. I, II, World Sci. Publ., River Edge, NJ, 2003, 599–611
- A. Komech, Quantum mechanics: genesis and achievements, Springer, Dordrecht, 2013, xviii+285 pp.
- A. Komech, “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst., 36:11 (2016), 6201–6256
- A. Komech, “Quantum jumps and attractors of Maxwell–Schrödinger equations”, Nonlinearity (to appear)
- A. I. Komech, A. A. Komech, “On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator”, C. R. Math. Acad. Sci. Paris, 343:2 (2006), 111–114
- A. Komech, A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142
- A. I. Komech, A. A. Komech, “Global attraction to solitary waves in models based on the Klein–Gordon equation”, SIGMA, 4 (2008), 010, 23 pp.
- A. Komech, A. Komech, “Global attraction to solitary waves for Klein–Gordon equation with mean field interaction”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:3 (2009), 855–868
- A. Komech, A. Komech, “On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators”, J. Math. Pures Appl. (9), 93:1 (2010), 91–111
- A. Komech, A. Komech, “Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction”, SIAM J. Math. Anal., 42:6 (2010), 2944–2964
- A. Komech, E. Kopylova, “Scattering of solitons for the Schrödinger equation coupled to a particle”, Russ. J. Math. Phys., 13:2 (2006), 158–187
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for 3D Klein–Gordon equation”, J. Differential Equations, 248:3 (2010), 501–520
- A. Komech, E. Kopylova, Dispersion decay and scattering theory, John Wiley & Sons, Inc., Hoboken, NJ, 2012, xxvi+175 pp.
- A. I. Komech, E. A. Kopylova, “Dispersion decay for the magnetic Schrödinger equation”, J. Funct. Anal., 264:3 (2013), 735–751
- A. Komech, E. Kopylova, “On eigenfunction expansion of solutions to the Hamilton equations”, J. Stat. Phys., 154:1-2 (2014), 503–521
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for magnetic Klein–Gordon equation”, Appl. Anal., 94:2 (2015), 218–232
- A. Komech, E. Kopylova, “On the eigenfunction expansion for Hamilton operators”, J. Spectr. Theory, 5:2 (2015), 331–361
- A. I. Komech, E. A. Kopylova, S. A. Kopylov, “On nonlinear wave equations with parabolic potentials”, J. Spectr. Theory, 3:4 (2013), 485–503
- A. I. Komech, E. A. Kopylova, M. Kunze, “Dispersive estimates for 1D discrete Schrödinger and Klein–Gordon equations”, Appl. Anal., 85:12 (2006), 1487–1508
- A. I. Komech, E. A. Kopylova, H. Spohn, “Scattering of solitons for Dirac equation coupled to a particle”, J. Math. Anal. Appl., 383:2 (2011), 265–290
- A. Komech, E. Kopylova, D. Stuart, “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079
- A. I. Komech, E. A. Kopylova, B. R. Vainberg, “On dispersive properties of discrete 2D Schrödinger and Klein–Gordon equations”, J. Funct. Anal., 254:8 (2008), 2227–2254
- A. Komech, M. Kunze, H. Spohn, “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys., 203:1 (1999), 1–19
- A. I. Komech, N. J. Mauser, A. P. Vinnichenko, “Attraction to solitons in relativistic nonlinear wave equations”, Russ. J. Math. Phys., 11:3 (2004), 289–307
- A. I. Komech, A. E. Merzon, “Scattering in the nonlinear Lamb system”, Phys. Lett. A, 373:11 (2009), 1005–1010
- A. I. Komech, A. E. Merzon, “On asymptotic completeness for scattering in the nonlinear Lamb system”, J. Math. Phys., 50:2 (2009), 023514, 10 pp.
- A. I. Komech, A. E. Merzon, “On asymptotic completeness of scattering in the nonlinear Lamb system. II”, J. Math. Phys., 54:1 (2013), 012702, 9 pp.
- A. Komech, A. Merzon, Stationary diffraction by wedges. Method of automorphic functions on complex characteristics, Lecture Notes in Math., 2249, Springer, Cham, 2019, xi+165 pp.
- A. Komech, H. Spohn, “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24
- A. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3-4 (2000), 559–584
- A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1-2 (1997), 307–335
- Е. А. Копылова, “Дисперсионные оценки для дискретных уравнений Шредингера и Клейна–Гордона”, Алгебра и анализ, 21:5 (2009), 87–113
- E. A. Kopylova, “On asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator”, Nonlinear Anal., 71:7-8 (2009), 3031–3046
- E. A. Kopylova, “On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator”, Appl. Anal., 89:9 (2010), 1467–1492
- Е. А. Копылова, “Дисперсионные оценки для уравнений Шрeдингера и Клейна–Гордона”, УМН, 65:1(391) (2010), 97–144
- Е. А. Копылова, “Асимптотическая устойчивость солитонов для нелинейных гиперболических уравнений”, УМН, 68:2(410) (2013), 91–144
- E. Kopylova, “On global attraction to solitary waves for the Klein–Gordon equation with concentrated nonlinearity”, Nonlinearity, 30:11 (2017), 4191–4207
- E. Kopylova, “On global attraction to stationary states for wave equation with concentrated nonlinearity”, J. Dynam. Differential Equations, 30:1 (2018), 107–116
- E. Kopylova, “On dispersion decay for 3D Klein–Gordon equation”, Discrete Contin. Dyn. Syst., 38:11 (2018), 5765–5780
- E. A. Kopylova, A. I. Komech, “Long time decay for 2D Klein–Gordon equation”, J. Funct. Anal., 259:2 (2010), 477–502
- E. A. Kopylova, A. I. Komech, “On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation”, Comm. Math. Phys., 302:1 (2011), 225–252
- E. Kopylova, A. I. Komech, “On asymptotic stability of kink for relativistic Ginzburg–Landau equations”, Arch. Ration. Mech. Anal., 202:1 (2011), 213–245
- E. Kopylova, A. Komech, “On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities”, Dyn. Partial Differ. Equ., 16:2 (2019), 105–124
- E. Kopylova, A. Komech, “Global attractor for 1D Dirac field coupled to nonlinear oscillator”, Comm. Math. Phys., Publ. online 2019, 1–31
- E. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Dirac equations”, J. Math. Anal. Appl., 434:1 (2016), 191–208
- V. V. Kozlov, “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251
- В. В. Козлов, О. Г. Смолянов, “Функция Вигнера и диффузия в бесстолкновительной среде, состоящей из квантовых частиц”, Теория вероятн. и ее примен., 51:1 (2006), 109–125
- В. В. Козлов, Д. В. Трещeв, “Слабая сходимость решений уравнения Лиувилля для нелинейных гамильтоновых систем”, ТМФ, 134:3 (2003), 388–400
- В. В. Козлов, Д. В. Трещeв, “Эволюция мер в фазовом пространстве нелинейных гамильтоновых систем”, ТМФ, 136:3 (2003), 496–506
- М. Г. Крейн, Г. К. Лангер, “О спектральной функции самосопряженного оператора в пространстве с индефинитной метрикой”, Докл. АН СССР, 152:1 (1963), 39–42
- J. Krieger, K. Nakanishi, W. Schlag, “Center-stable manifold of the ground state in the energy space for the critical wave equation”, Math. Ann., 361:1-2 (2015), 1–50
- J. Krieger, W. Schlag, Concentration compactness for critical wave maps, EMS Monogr. Math., Eur. Math. Soc., Zürich, 2012, vi+484 pp.
- M. Kunze, H. Spohn, “Adiabatic limit for the Maxwell–Lorentz equations”, Ann. Henri Poincare, 1:4 (2000), 625–653
- О. А. Ладыженская, “О принципе предельной амплитуды”, УМН, 12:3(75) (1957), 161–164
- G. L. Lamb, Jr., Elements of soliton theory, Pure Appl. Math., John Wiley & Sons, Inc., New York, 1980, xiii+289 pp.
- H. Lamb, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium”, Proc. London Math. Soc., 32 (1900), 208–211
- L. Landau, “On the problem of turbulence”, Докл. АН СССР, 44 (1944), 311–314
- H. Langer, “Spectral functions of definitizable operators in Krein spaces”, Functional analysis (Dubrovnik, 1981), Lecture Notes in Math., 948, Springer, Berlin–New York, 1982, 1–46
- P. D. Lax, C. S. Morawetz, R. S. Phillips, “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure Appl. Math., 16:4 (1963), 477–486
- B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp.
- L. Lewin, Advanced theory of waveguides, Iliffe and Sons, Ltd., London, 1951, 192 pp.
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- E. Long, D. Stuart, “Effective dynamics for solitons in the nonlinear Klein–Gordon–Maxwell system and the Lorentz force law”, Rev. Math. Phys., 21:4 (2009), 459–510
- Л. А. Люстерник, Л. Г. Шнирельман, Топологические методы в вариационных задачах, МГУ, М., 1930, 68 с.
- Л. Люстерник, Л. Шнирельман, “Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхностей”, УМН, 2:1(17) (1947), 166–217
- B. Marshall, W. Strauss, S. Wainger, “$L^{p}-L^{q}$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440
- Y. Martel, “Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations”, Amer. J. Math., 127:5 (2005), 1103–1140
- Y. Martel, F. Merle, “Asymptotic stability of solitons of the subcritical gKdV equations revisited”, Nonlinearity, 18:1 (2005), 55–80
- Y. Martel, F. Merle, T.-P. Tsai, “Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations”, Comm. Math. Phys., 231:2 (2002), 347–373
- M. Merkli, I. M. Sigal, “A time-dependent theory of quantum resonances”, Comm. Math. Phys., 201:3 (1999), 549–576
- J. R. Miller, M. I. Weinstein, “Asymptotic stability of solitary waves for the regularized long-wave equation”, Comm. Pure Appl. Math., 49:4 (1996), 399–441
- C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361
- C. S. Morawetz, “Time decay for the nonlinear Klein–Gordon equations”, Proc. Roy. Soc. London Ser. A, 306 (1968), 291–296
- C. S. Morawetz, W. A. Strauss, “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31
- K. Nakanishi, W. Schlag, Invariant manifolds and dispersive Hamiltonian evolution equations, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2011, vi+253 pp.
- Y. Ne'eman, “Unified interactions in the unitary gauge theory”, Nuclear Phys., 30 (1962), 347–349
- D. Noja, A. Posilicano, “Wave equations with concentrated nonlinearities”, J. Phys. A, 38:22 (2005), 5011–5022
- R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349
- G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 29:7-8 (2004), 1051–1095
- C.-A. Pillet, C. E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Differential Equations, 141:2 (1997), 310–326
- М. Рид, Б. Саймон, Методы современной математической физики, т. 3, Теория рассеяния, Мир, М., 1982, 445 с.
- М. Рид, Б. Саймон, Методы современной математической физики, т. 4, Анализ операторов, Мир, М., 1982, 430 с.
- I. Rodnianski, W. Schlag, “Time decay for solutions of Schrödinger equations with rough and time-dependent potentials”, Invent. Math., 155:3 (2004), 451–513
- I. Rodnianski, W. Schlag, A. Soffer, Asymptotic stability of $N$-soliton states of NLS, 2003, 70 pp.
- I. Rodnianski, W. Schlag, A. Soffer, “Dispersive analysis of charge transfer models”, Comm. Pure Appl. Math., 58:2 (2005), 149–216
- У. Рудин, Функциональный анализ, Мир, М., 1975, 443 с.
- Э. Шредингер, “Квантование как задача о собственных значениях. I, II, III, IV”, Избранные труды по квантовой механике, Наука, М., 1976, 9–20, 21–50, 75–115, 116–138
- I. Segal, “Quantization and dispersion for nonlinear relativistic equations”, Mathematical theory of elementary particles (Dedham, MA, 1965), M.I.T. Press, Cambridge, MA, 1966, 79–108
- I. Segal, “Dispersion for non-linear relativistic equations. II”, Ann. Sci. Ecole Norm. Sup. (4), 1:4 (1968), 459–497
- I. M. Sigal, “Non-linear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions”, Comm. Math. Phys., 153:2 (1993), 297–320
- A. Soffer, “Soliton dynamics and scattering”, International congress of mathematicians, v. III, Eur. Math. Soc., Zürich, 2006, 459–471
- A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146
- A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390
- A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74
- A. Soffer, M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071
- H. Spohn, Dynamics of charged particles and their radiation field, Cambridge Univ. Press, Cambridge, 2004, xvi+360 pp.
- W. A. Strauss, “Decay and asymptotics for $square u=F(u)$”, J. Funct. Anal., 2:4 (1968), 409–457
- W. A. Strauss, “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55:2 (1977), 149–162
- W. A. Strauss, “Nonlinear scattering theory at low energy”, J. Funct. Anal., 41:1 (1981), 110–133
- W. A. Strauss, “Nonlinear scattering theory at low energy: sequel”, J. Funct. Anal., 43:3 (1981), 281–293
- D. Stuart, “Existence and Newtonian limit of nonlinear bound states in the Einstein–Dirac system”, J. Math. Phys., 51:3 (2010), 032501, 13 pp.
- D. Tataru, “Local decay of waves on asymptotically flat stationary space-times”, Amer. J. Math., 135:2 (2013), 361–401
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
- E. C. Titchmarsh, “The zeros of certain integral functions”, Proc. London Math. Soc. (2), 25:1 (1926), 283–302
- D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712
- T.-P. Tsai, “Asymptotic dynamics of nonlinear Schrödinger equations with many bound states”, J. Differential Equations, 192:1 (2003), 225–282
- T.-P. Tsai, H.-T. Yau, “Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data”, Adv. Theor. Math. Phys., 6:1 (2002), 107–139
- T.-P. Tsai, H.-T. Yau, “Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions”, Comm. Pure Appl. Math., 55:2 (2002), 153–216
- M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal., 16:3 (1985), 472–491
- D. R. Yafaev, “On a zero-range interaction of a quantum particle with the vacuum”, J. Phys. A, 25:4 (1992), 963–978
- D. R. Yafaev, “A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials”, J. Math. Phys., 58:6 (2017), 063511, 24 pp.
- K. Yajima, “Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue”, Comm. Math. Phys., 259:2 (2005), 475–509
- Я. Б. Зельдович, “Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении”, ЖЭТФ, 38:3 (1960), 819–824
Supplementary files
