Attractors of nonlinear Hamiltonian partial differential equations
- Authors: Komech A.I.1, Kopylova E.A.1
-
Affiliations:
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Issue: Vol 75, No 1 (2020)
- Pages: 3-94
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133586
- DOI: https://doi.org/10.4213/rm9900
- ID: 133586
Cite item
Abstract
Keywords
About the authors
Aleksandr Il'ich Komech
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: alexander.komech@univie.ac.at
Doctor of physico-mathematical sciences, Professor
Elena Andreevna Kopylova
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: elena.kopylova@univie.ac.at
References
- M. Abraham, “Prinzipien der Dynamik des Elektrons”, Phys. Z., 4 (1902), 57–63
- M. Abraham, Theorie der Elektrizität, v. 2, Elektromagnetische Theorie der Strahlung, B. G. Teubner, Leipzig, 1905, 404 pp.
- R. K. Adair, E. C. Fowler, Strange particles, Intersci. Publ. John Wiley & Sons, New York–London, 1963, viii+151 pp.
- R. Adami, D. Noja, C. Ortoleva, “Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three”, J. Math. Phys., 54:1 (2013), 013501, 33 pp.
- S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218
- S. Albeverio, R. Figari, “Quantum fields and point interactions”, Rend. Mat. Appl. (7), 39:2 (2018), 161–180
- L. Andersson, P. Blue, “Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior”, J. Hyperbolic Differ. Equ., 12:4 (2015), 689–743
- А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
- V. Bach, T. Chen, J. Faupin, J. Fröhlich, I. M. Sigal, “Effective dynamics of an electron coupled to an external potential in non-relativistic QED”, Ann. Henri Poincare, 14:6 (2013), 1573–1597
- D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math., 133:5 (2011), 1421–1468
- D. Bambusi, L. Galgani, “Some rigorous results on the Pauli–Fierz model of classical electrodynamics”, Ann. Inst. H. Poincare Phys. Theor., 58:2 (1993), 155–171
- V. E. Barnes et al., “Observation of a hyperon with strangeness minus three”, Phys. Rev. Lett., 12:8 (1964), 204–206
- M. Beals, W. Strauss, “$L^p$ estimates for the wave equation with a potential”, Comm. Partial Differential Equations, 18:7-8 (1993), 1365–1397
- M. Beceanu, M. Goldberg, “Schrödinger dispersive estimates for a scaling-critical class of potentials”, Comm. Math. Phys., 314:2 (2012), 471–481
- M. Beceanu, M. Goldberg, “Strichartz estimates and maximal operators for the wave equation in $mathbb{R}^3$”, J. Funct. Anal., 266:3 (2014), 1476–1510
- A. Bensoussan, C. Iliine, A. Komech, “Breathers for a relativistic nonlinear wave equation”, Arch. Ration. Mech. Anal., 165:4 (2002), 317–345
- H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Ration. Mech. Anal., 82:4 (1983), 313–345
- H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. II. Existence of infinitely many solutions”, Arch. Ration. Mech. Anal., 82:4 (1983), 347–375
- Ф. А. Березин, Л. Д. Фаддеев, “Замечание об уравнении Шредингера с сингулярным потенциалом”, Докл. АН СССР, 137:5 (1961), 1011–1014
- N. Bohr, “On the constitution of atoms and molecules. I”, Philos. Mag. (6), 26:151 (1913), 1–25
- Н. Бор, “Дискуссии с Эйнштейном о проблемах теории познания в атомной физике”, УФН, 66 (1958), 571–598
- N. Boussaid, “Stable directions for small nonlinear Dirac standing waves”, Comm. Math. Phys., 268:3 (2006), 757–817
- N. Boussaid, S. Cuccagna, “On stability of standing waves of nonlinear Dirac equations”, Comm. Partial Differential Equations, 37:6 (2012), 1001–1056
- V. S. Buslaev, A. I. Komech, E. A. Kopylova, D. Stuart, “On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator”, Comm. Partial Differential Equations, 33:4 (2008), 669–705
- В. С. Буслаев, Г. С. Перельман, “Рассеяние для нелинейного уравнения Шрeдингера: состояния, близкие к солитону”, Алгебра и анализ, 4:6 (1992), 63–102
- V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc., Providence, RI, 1995, 75–98
- V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincare Anal. Non Lineaire, 20:3 (2003), 419–475
- V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
- G. M. Coclite, V. Georgiev, “Solitary waves for Maxwell–Schrödinger equations”, Electron. J. Differential Equations, 2004 (2004), 94, 31 pp. (electronic)
- A. Comech, “On global attraction to solitary waves. Klein–Gordon equation with mean field interaction at several points”, J. Differential Equations, 252:10 (2012), 5390–5413
- A. Comech, “Weak attractor of the Klein–Gordon field in discrete space-time interacting with a nonlinear oscillator”, Discrete Contin. Dyn. Syst., 33:7 (2013), 2711–2755
- F. H. J. Cornish, “Classical radiation theory and point charges”, Proc. Phys. Soc., 86:3 (1965), 427–442
- S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145
- S. Cuccagna, “The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states”, Comm. Math. Phys., 305:2 (2011), 279–331
- S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys., 284:1 (2008), 51–77
- M. Dafermos, I. Rodnianski, “A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds”, Invent. Math., 185:3 (2011), 467–559
- P. D'Ancona, “Kato smoothing and Strichartz estimates for wave equations with magnetic potentials”, Comm. Math. Phys., 335:1 (2015), 1–16
- P. D'Ancona, L. Fanelli, L. Vega, N. Visciglia, “Endpoint Strichartz estimates for the magnetic Schrödinger equation”, J. Funct. Anal., 258:10 (2010), 3227–3240
- S. Demoulini, D. Stuart, “Adiabatic limit and the slow motion of vortices in a Chern–Simons–Schrödinger system”, Comm. Math. Phys., 290:2 (2009), 597–632
- P. A. M. Dirac, “Classical theory of radiating electrons”, Proc. Roy. Soc. London Ser. A, 167:929 (1938), 148–169
- R. Donninger, W. Schlag, A. Soffer, “On pointwise decay of linear waves on a Schwarzschild black hole background”, Comm. Math. Phys., 309:1 (2012), 51–86
- T. Duyckaerts, C. Kenig, F. Merle, “Profiles of bounded radial solutions of the focusing, energy-critical wave equation”, Geom. Funct. Anal., 22:3 (2012), 639–698
- T. Duyckaerts, C. Kenig, F. Merle, “Scattering for radial, bounded solutions of focusing supercritical wave equations”, Int. Math. Res. Not. IMRN, 2014:1 (2014), 224–258
- T. Duyckaerts, C. Kenig, F. Merle, “Concentration-compactness and universal profiles for the non-radial energy critical wave equation”, Nonlinear Anal., 138 (2016), 44–82
- А. В. Дымов, “Диссипативные эффекты в одной линейной лагранжевой системе с бесконечным числом степеней свободы”, Изв. РАН. Сер. матем., 76:6 (2012), 45–80
- W. Eckhaus, A. van Harten, The inverse scattering transformation and the theory of solitons. An introduction, North-Holland Math. Stud., 50, North-Holland Publishing Co., Amsterdam–New York, 1981, xi+222 pp.
- И. Е. Егорова, Е. А. Копылова, В. А. Марченко, Г. Тешль, “Об уточнении дисперсионных оценок для одномерных уравнений Шрeдингера и Клейна–Гордона”, УМН, 71:3(429) (2016), 3–26
- I. Egorova, E. A. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Schrödinger and wave equations”, J. Spectr. Theory, 5:4 (2015), 663–696
- A. Einstein, “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?”, Ann. der Phys. (4), 18 (1905), 639–641
- M. B. Erdoğan, M. Goldberg, W. R. Green, “Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy”, Comm. Partial Differential Equations, 39:10 (2014), 1936–1964
- M. J. Esteban, V. Georgiev, E. Sere, “Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations, 4:3 (1996), 265–281
- Р. Фейнман, З. Лейтон, М. Сэндс, Фейнмановские лекции по физике, т. 5, 6, 7, Мир, М., 1977, 302 с., 349 с., 288 с.
- C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp.
- J. Fröhlich, Z. Gang, “Emission of Cherenkov radiation as a mechanism for Hamiltonian friction”, Adv. Math., 264 (2014), 183–235
- J. Fröhlich, S. Gustafson, B. L. G. Jonsson, I. M. Sigal, “Solitary wave dynamics in an external potential”, Comm. Math. Phys., 250:3 (2004), 613–642
- J. Fröhlich, T.-P. Tsai, H.-T. Yau, “On the point-particle (Newtonian) limit of the non-linear Hartree equation”, Comm. Math. Phys., 225:2 (2002), 223–274
- G. I. Gaudry, “Quasimeasures and operators commuting with convolution”, Pacific J. Math., 18:3 (1966), 461–476
- M. Gell-Mann, “Symmetries of baryons and mesons”, Phys. Rev. (2), 125:3 (1962), 1067–1084
- H.-P. Gittel, J. Kijowski, E. Zeidler, “The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics”, Comm. Math. Phys., 198:3 (1998), 711–736
- M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. I. The odd dimensional case”, J. Funct. Anal., 269:3 (2015), 633–682
- M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. II. The even dimensional case”, J. Spectr. Theory, 7:1 (2017), 33–86
- M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197
- M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal., 94:2 (1990), 308–348
- J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
- F. Halzen, A. D. Martin, Quarks and leptons: an introductory course in modern particle physics, John Wiley & Sons, Inc., New York, 1984, xvi+396 pp.
- T. Harada, H. Maeda, “Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity”, Classical Quantum Gravity, 21:2 (2004), 371–389
- A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991, xii+132 pp.
- W. Heisenberg, “Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen”, Acta Phys. Austriaca, 14 (1961), 328–339
- В. Гейзенберг, Введение в единую полевую теорию элементарных частиц, Мир, М., 1968, 240 с.
- Д. Хенри, Геометрическая теория полулинейных параболических уравнений, Мир, М., 1985, 376 с.
- E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231
- L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, 2nd ed., Springer-Verlag, Berlin, 1990, xii+440 pp.
- L. Houllevigue, L'evolution des sciences, Librairie A. Collin, Paris, 1908, xi+287 pp.
- В. М. Имайкин, “Солитонные асимптотики для систем типа ‘поле-частица’ ”, УМН, 68:2(410) (2013), 33–90
- V. Imaykin, A. Komech, P. A. Markowich, “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217
- V. Imaykin, A. Komech, N. Mauser, “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. Henri Poincare, 5:6 (2004), 1117–1135
- V. Imaykin, A. Komech, H. Spohn, “Soliton-type asymptotic and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436
- V. Imaykin, A. Komech, H. Spohn, “Scattering theory for a particle coupled to a scalar field”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 387–396
- V. Imaykin, A. Komech, H. Spohn, “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1-2 (2004), 143–156
- V. Imaykin, A. Komech, H. Spohn, “Scattering asymptotics for a charged particle coupled to the Maxwell field”, J. Math. Phys., 52:4 (2011), 042701, 33 pp.
- V. Imaykin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367
- V. Imaykin, A. Komech, B. Vainberg, “Scattering of solitons for coupled wave-particle equations”, J. Math. Anal. Appl., 389:2 (2012), 713–740
- J. D. Jackson, Classical electrodynamics, 3rd ed., John Wiley & Sons, Inc., New York, 1999, xxi+808 pp.
- A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611
- K. Jörgens, “Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308
- J.-L. Journe, A. Soffer, C. D. Sogge, “Decay estimates for Schrödinger operators”, Comm. Pure Appl. Math., 44:5 (1991), 573–604
- C. Kenig, A. Lawrie, B. Liu, W. Schlag, “Stable soliton resolution for exterior wave maps in all equivariance classes”, Adv. Math., 285 (2015), 235–300
- C. E. Kenig, A. Lawrie, W. Schlag, “Relaxation of wave maps exterior to a ball to harmonic maps for all data”, Geom. Funct. Anal., 24:2 (2014), 610–647
- C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675
- C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math., 201:2 (2008), 147–212
- C. E. Kenig, F. Merle, “Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications”, Amer. J. Math., 133:4 (2011), 1029–1065
- А. А. Комеч, А. И. Комеч, “Вариант теоремы Титчмарша о свертке для распределений на окружности”, Функц. анализ и его прил., 47:1 (2013), 26–32
- А. И. Комеч, “О стабилизации взаимодействия струны с нелинейным осциллятором”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1991, № 6, 35–41
- А. И. Комеч, “Линейные уравнения в частных производных с постоянными коэффициентами”, Дифференциальные уравнения с частными производными – 2, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 31, ВИНИТИ, М., 1988, 127–261
- A. I. Komech, “On stabilization of string-nonlinear oscillator interaction”, J. Math. Anal. Appl., 196:1 (1995), 384–409
- A. I. Komech, “On the stabilization of string-oscillator interaction”, Russ. J. Math. Phys., 3:2 (1995), 227–247
- A. Komech, “On transitions to stationary states in one-dimensional nonlinear wave equations”, Arch. Ration. Mech. Anal., 149:3 (1999), 213–228
- А. И. Комеч, “Аттракторы нелинейных гамильтоновых одномерных волновых уравнений”, УМН, 55:1(331) (2000), 45–98
- A. I. Komech, “On attractor of a singular nonlinear $mathrm U(1)$-invariant Klein–Gordon equation”, Progress in analysis (Berlin, 2001), v. I, II, World Sci. Publ., River Edge, NJ, 2003, 599–611
- A. Komech, Quantum mechanics: genesis and achievements, Springer, Dordrecht, 2013, xviii+285 pp.
- A. Komech, “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst., 36:11 (2016), 6201–6256
- A. Komech, “Quantum jumps and attractors of Maxwell–Schrödinger equations”, Nonlinearity (to appear)
- A. I. Komech, A. A. Komech, “On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator”, C. R. Math. Acad. Sci. Paris, 343:2 (2006), 111–114
- A. Komech, A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142
- A. I. Komech, A. A. Komech, “Global attraction to solitary waves in models based on the Klein–Gordon equation”, SIGMA, 4 (2008), 010, 23 pp.
- A. Komech, A. Komech, “Global attraction to solitary waves for Klein–Gordon equation with mean field interaction”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:3 (2009), 855–868
- A. Komech, A. Komech, “On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators”, J. Math. Pures Appl. (9), 93:1 (2010), 91–111
- A. Komech, A. Komech, “Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction”, SIAM J. Math. Anal., 42:6 (2010), 2944–2964
- A. Komech, E. Kopylova, “Scattering of solitons for the Schrödinger equation coupled to a particle”, Russ. J. Math. Phys., 13:2 (2006), 158–187
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for 3D Klein–Gordon equation”, J. Differential Equations, 248:3 (2010), 501–520
- A. Komech, E. Kopylova, Dispersion decay and scattering theory, John Wiley & Sons, Inc., Hoboken, NJ, 2012, xxvi+175 pp.
- A. I. Komech, E. A. Kopylova, “Dispersion decay for the magnetic Schrödinger equation”, J. Funct. Anal., 264:3 (2013), 735–751
- A. Komech, E. Kopylova, “On eigenfunction expansion of solutions to the Hamilton equations”, J. Stat. Phys., 154:1-2 (2014), 503–521
- A. I. Komech, E. A. Kopylova, “Weighted energy decay for magnetic Klein–Gordon equation”, Appl. Anal., 94:2 (2015), 218–232
- A. Komech, E. Kopylova, “On the eigenfunction expansion for Hamilton operators”, J. Spectr. Theory, 5:2 (2015), 331–361
- A. I. Komech, E. A. Kopylova, S. A. Kopylov, “On nonlinear wave equations with parabolic potentials”, J. Spectr. Theory, 3:4 (2013), 485–503
- A. I. Komech, E. A. Kopylova, M. Kunze, “Dispersive estimates for 1D discrete Schrödinger and Klein–Gordon equations”, Appl. Anal., 85:12 (2006), 1487–1508
- A. I. Komech, E. A. Kopylova, H. Spohn, “Scattering of solitons for Dirac equation coupled to a particle”, J. Math. Anal. Appl., 383:2 (2011), 265–290
- A. Komech, E. Kopylova, D. Stuart, “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079
- A. I. Komech, E. A. Kopylova, B. R. Vainberg, “On dispersive properties of discrete 2D Schrödinger and Klein–Gordon equations”, J. Funct. Anal., 254:8 (2008), 2227–2254
- A. Komech, M. Kunze, H. Spohn, “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys., 203:1 (1999), 1–19
- A. I. Komech, N. J. Mauser, A. P. Vinnichenko, “Attraction to solitons in relativistic nonlinear wave equations”, Russ. J. Math. Phys., 11:3 (2004), 289–307
- A. I. Komech, A. E. Merzon, “Scattering in the nonlinear Lamb system”, Phys. Lett. A, 373:11 (2009), 1005–1010
- A. I. Komech, A. E. Merzon, “On asymptotic completeness for scattering in the nonlinear Lamb system”, J. Math. Phys., 50:2 (2009), 023514, 10 pp.
- A. I. Komech, A. E. Merzon, “On asymptotic completeness of scattering in the nonlinear Lamb system. II”, J. Math. Phys., 54:1 (2013), 012702, 9 pp.
- A. Komech, A. Merzon, Stationary diffraction by wedges. Method of automorphic functions on complex characteristics, Lecture Notes in Math., 2249, Springer, Cham, 2019, xi+165 pp.
- A. Komech, H. Spohn, “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24
- A. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3-4 (2000), 559–584
- A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1-2 (1997), 307–335
- Е. А. Копылова, “Дисперсионные оценки для дискретных уравнений Шредингера и Клейна–Гордона”, Алгебра и анализ, 21:5 (2009), 87–113
- E. A. Kopylova, “On asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator”, Nonlinear Anal., 71:7-8 (2009), 3031–3046
- E. A. Kopylova, “On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator”, Appl. Anal., 89:9 (2010), 1467–1492
- Е. А. Копылова, “Дисперсионные оценки для уравнений Шрeдингера и Клейна–Гордона”, УМН, 65:1(391) (2010), 97–144
- Е. А. Копылова, “Асимптотическая устойчивость солитонов для нелинейных гиперболических уравнений”, УМН, 68:2(410) (2013), 91–144
- E. Kopylova, “On global attraction to solitary waves for the Klein–Gordon equation with concentrated nonlinearity”, Nonlinearity, 30:11 (2017), 4191–4207
- E. Kopylova, “On global attraction to stationary states for wave equation with concentrated nonlinearity”, J. Dynam. Differential Equations, 30:1 (2018), 107–116
- E. Kopylova, “On dispersion decay for 3D Klein–Gordon equation”, Discrete Contin. Dyn. Syst., 38:11 (2018), 5765–5780
- E. A. Kopylova, A. I. Komech, “Long time decay for 2D Klein–Gordon equation”, J. Funct. Anal., 259:2 (2010), 477–502
- E. A. Kopylova, A. I. Komech, “On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation”, Comm. Math. Phys., 302:1 (2011), 225–252
- E. Kopylova, A. I. Komech, “On asymptotic stability of kink for relativistic Ginzburg–Landau equations”, Arch. Ration. Mech. Anal., 202:1 (2011), 213–245
- E. Kopylova, A. Komech, “On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities”, Dyn. Partial Differ. Equ., 16:2 (2019), 105–124
- E. Kopylova, A. Komech, “Global attractor for 1D Dirac field coupled to nonlinear oscillator”, Comm. Math. Phys., Publ. online 2019, 1–31
- E. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Dirac equations”, J. Math. Anal. Appl., 434:1 (2016), 191–208
- V. V. Kozlov, “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251
- В. В. Козлов, О. Г. Смолянов, “Функция Вигнера и диффузия в бесстолкновительной среде, состоящей из квантовых частиц”, Теория вероятн. и ее примен., 51:1 (2006), 109–125
- В. В. Козлов, Д. В. Трещeв, “Слабая сходимость решений уравнения Лиувилля для нелинейных гамильтоновых систем”, ТМФ, 134:3 (2003), 388–400
- В. В. Козлов, Д. В. Трещeв, “Эволюция мер в фазовом пространстве нелинейных гамильтоновых систем”, ТМФ, 136:3 (2003), 496–506
- М. Г. Крейн, Г. К. Лангер, “О спектральной функции самосопряженного оператора в пространстве с индефинитной метрикой”, Докл. АН СССР, 152:1 (1963), 39–42
- J. Krieger, K. Nakanishi, W. Schlag, “Center-stable manifold of the ground state in the energy space for the critical wave equation”, Math. Ann., 361:1-2 (2015), 1–50
- J. Krieger, W. Schlag, Concentration compactness for critical wave maps, EMS Monogr. Math., Eur. Math. Soc., Zürich, 2012, vi+484 pp.
- M. Kunze, H. Spohn, “Adiabatic limit for the Maxwell–Lorentz equations”, Ann. Henri Poincare, 1:4 (2000), 625–653
- О. А. Ладыженская, “О принципе предельной амплитуды”, УМН, 12:3(75) (1957), 161–164
- G. L. Lamb, Jr., Elements of soliton theory, Pure Appl. Math., John Wiley & Sons, Inc., New York, 1980, xiii+289 pp.
- H. Lamb, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium”, Proc. London Math. Soc., 32 (1900), 208–211
- L. Landau, “On the problem of turbulence”, Докл. АН СССР, 44 (1944), 311–314
- H. Langer, “Spectral functions of definitizable operators in Krein spaces”, Functional analysis (Dubrovnik, 1981), Lecture Notes in Math., 948, Springer, Berlin–New York, 1982, 1–46
- P. D. Lax, C. S. Morawetz, R. S. Phillips, “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure Appl. Math., 16:4 (1963), 477–486
- B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp.
- L. Lewin, Advanced theory of waveguides, Iliffe and Sons, Ltd., London, 1951, 192 pp.
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- E. Long, D. Stuart, “Effective dynamics for solitons in the nonlinear Klein–Gordon–Maxwell system and the Lorentz force law”, Rev. Math. Phys., 21:4 (2009), 459–510
- Л. А. Люстерник, Л. Г. Шнирельман, Топологические методы в вариационных задачах, МГУ, М., 1930, 68 с.
- Л. Люстерник, Л. Шнирельман, “Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхностей”, УМН, 2:1(17) (1947), 166–217
- B. Marshall, W. Strauss, S. Wainger, “$L^{p}-L^{q}$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440
- Y. Martel, “Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations”, Amer. J. Math., 127:5 (2005), 1103–1140
- Y. Martel, F. Merle, “Asymptotic stability of solitons of the subcritical gKdV equations revisited”, Nonlinearity, 18:1 (2005), 55–80
- Y. Martel, F. Merle, T.-P. Tsai, “Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations”, Comm. Math. Phys., 231:2 (2002), 347–373
- M. Merkli, I. M. Sigal, “A time-dependent theory of quantum resonances”, Comm. Math. Phys., 201:3 (1999), 549–576
- J. R. Miller, M. I. Weinstein, “Asymptotic stability of solitary waves for the regularized long-wave equation”, Comm. Pure Appl. Math., 49:4 (1996), 399–441
- C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361
- C. S. Morawetz, “Time decay for the nonlinear Klein–Gordon equations”, Proc. Roy. Soc. London Ser. A, 306 (1968), 291–296
- C. S. Morawetz, W. A. Strauss, “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31
- K. Nakanishi, W. Schlag, Invariant manifolds and dispersive Hamiltonian evolution equations, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2011, vi+253 pp.
- Y. Ne'eman, “Unified interactions in the unitary gauge theory”, Nuclear Phys., 30 (1962), 347–349
- D. Noja, A. Posilicano, “Wave equations with concentrated nonlinearities”, J. Phys. A, 38:22 (2005), 5011–5022
- R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349
- G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 29:7-8 (2004), 1051–1095
- C.-A. Pillet, C. E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Differential Equations, 141:2 (1997), 310–326
- М. Рид, Б. Саймон, Методы современной математической физики, т. 3, Теория рассеяния, Мир, М., 1982, 445 с.
- М. Рид, Б. Саймон, Методы современной математической физики, т. 4, Анализ операторов, Мир, М., 1982, 430 с.
- I. Rodnianski, W. Schlag, “Time decay for solutions of Schrödinger equations with rough and time-dependent potentials”, Invent. Math., 155:3 (2004), 451–513
- I. Rodnianski, W. Schlag, A. Soffer, Asymptotic stability of $N$-soliton states of NLS, 2003, 70 pp.
- I. Rodnianski, W. Schlag, A. Soffer, “Dispersive analysis of charge transfer models”, Comm. Pure Appl. Math., 58:2 (2005), 149–216
- У. Рудин, Функциональный анализ, Мир, М., 1975, 443 с.
- Э. Шредингер, “Квантование как задача о собственных значениях. I, II, III, IV”, Избранные труды по квантовой механике, Наука, М., 1976, 9–20, 21–50, 75–115, 116–138
- I. Segal, “Quantization and dispersion for nonlinear relativistic equations”, Mathematical theory of elementary particles (Dedham, MA, 1965), M.I.T. Press, Cambridge, MA, 1966, 79–108
- I. Segal, “Dispersion for non-linear relativistic equations. II”, Ann. Sci. Ecole Norm. Sup. (4), 1:4 (1968), 459–497
- I. M. Sigal, “Non-linear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions”, Comm. Math. Phys., 153:2 (1993), 297–320
- A. Soffer, “Soliton dynamics and scattering”, International congress of mathematicians, v. III, Eur. Math. Soc., Zürich, 2006, 459–471
- A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146
- A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390
- A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74
- A. Soffer, M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071
- H. Spohn, Dynamics of charged particles and their radiation field, Cambridge Univ. Press, Cambridge, 2004, xvi+360 pp.
- W. A. Strauss, “Decay and asymptotics for $square u=F(u)$”, J. Funct. Anal., 2:4 (1968), 409–457
- W. A. Strauss, “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55:2 (1977), 149–162
- W. A. Strauss, “Nonlinear scattering theory at low energy”, J. Funct. Anal., 41:1 (1981), 110–133
- W. A. Strauss, “Nonlinear scattering theory at low energy: sequel”, J. Funct. Anal., 43:3 (1981), 281–293
- D. Stuart, “Existence and Newtonian limit of nonlinear bound states in the Einstein–Dirac system”, J. Math. Phys., 51:3 (2010), 032501, 13 pp.
- D. Tataru, “Local decay of waves on asymptotically flat stationary space-times”, Amer. J. Math., 135:2 (2013), 361–401
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
- E. C. Titchmarsh, “The zeros of certain integral functions”, Proc. London Math. Soc. (2), 25:1 (1926), 283–302
- D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712
- T.-P. Tsai, “Asymptotic dynamics of nonlinear Schrödinger equations with many bound states”, J. Differential Equations, 192:1 (2003), 225–282
- T.-P. Tsai, H.-T. Yau, “Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data”, Adv. Theor. Math. Phys., 6:1 (2002), 107–139
- T.-P. Tsai, H.-T. Yau, “Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions”, Comm. Pure Appl. Math., 55:2 (2002), 153–216
- M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal., 16:3 (1985), 472–491
- D. R. Yafaev, “On a zero-range interaction of a quantum particle with the vacuum”, J. Phys. A, 25:4 (1992), 963–978
- D. R. Yafaev, “A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials”, J. Math. Phys., 58:6 (2017), 063511, 24 pp.
- K. Yajima, “Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue”, Comm. Math. Phys., 259:2 (2005), 475–509
- Я. Б. Зельдович, “Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении”, ЖЭТФ, 38:3 (1960), 819–824
Supplementary files
