Circle problem and the spectrum of the Laplace operator on closed 2-manifolds
- Authors: Popov D.A.1
-
Affiliations:
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
- Issue: Vol 74, No 5 (2019)
- Pages: 145-162
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133575
- DOI: https://doi.org/10.4213/rm9911
- ID: 133575
Cite item
Abstract
About the authors
Dmitrii Aleksandrovich Popov
Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical BiologyDoctor of physico-mathematical sciences, Senior Researcher
References
- Kai-Man Tsang, “Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function”, Sci. China Math., 53:9 (2010), 2561–2572
- А. Бeкер, Ф. Штайнер, “Квантовый хаос и квантовая эргодичность”, Квантовый хаос, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2008, 60–101
- P. Sarnak, “Arithmetic quantum chaos”, The Shur lectures (1992), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat-Gan, 1995, 183–236
- А. А. Карацуба, Основы аналитической теории чисел, 2-е изд., Наука, М., 1983, 240 с.
- S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser., 126, Cambridge Univ. Press, Cambridge, 1991, vi+120 pp.
- Г. Ф. Вороной, “О разложении посредством цилиндрических функций двойных сумм $sum f(pm^2+2qmn+rn^2)$, где $pm^2+2qmn+rn^2$ – положительная форма с целыми коэффициентами”, Собрание сочинений, т. 2, Изд-во АН УССР, Киев, 1952, 166–170
- G. H. Hardy, “On the expression of a number as the sum of two squares”, Quart. J. Pure Appl. Math., 46 (1915), 263–283
- E. Landau, Vorlesungen über Zahlentheorie, v. 2, Hirzel, Leipzig, 1927, vii+308 pp.
- G. H. Hardy, M. Reisz, The general theory of Dirichlet's series, Cambridge Tracts in Math. and Math. Phys., 18, Cambridge Univ. Press, Cambridge, 1915, 78 pp.
- E. Bombieri, H. Iwaniec, “On the order of $zeta(frac{1}{2}+it)$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13:3 (1986), 449–472
- H. Iwaniec, C. J. Mozzochi, “On the divisor and circle problems”, J. Number Theory, 29:1 (1988), 60–93
- M. N. Huxley, Area, lattice points, and exponential sums, London Math. Soc. Monogr. (N. S.), 13, The Clarendon Press, Oxford Univ. Press, New York, 1996, xii+494 pp.
- M. N. Huxley, “Exponential sums and lattice points. II”, Proc. London Math. Soc. (3), 66:2 (1993), 279–301
- M. N. Huxley, “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609
- J. Bourgain, N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, 2017, 23 pp.
- K. S. Gangadharan, “Two classical lattice point problems”, Proc. Cambridge Philos. Soc., 57:4 (1961), 699–721
- J. L. Hafner, “New omega theorems for two classical lattice point problems”, Invent. Math., 63:2 (1981), 181–186
- K. Soundararajan, “Omega results for the divisor and circle problems”, Int. Math. Res. Not., 2003:36 (2003), 1987–1998
- A. Ivic, “Large values of the error term in the divisor problem”, Invent. Math., 71:3 (1983), 513–520
- D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415
- E. Preissmann, “Sur la moyenne quadratique du terme de reste du problème du cercle”, C. R. Acad. Sci. Paris Ser. I Math., 306:4 (1988), 151–154
- W. G. Nowak, “Lattice points in a circle: an improved mean-square asymptotics”, Acta Arith., 113:3 (2004), 259–272
- Kai-Man Tsang, “Higher-power moments of $Delta(x)$, $E(t)$ and $P(x)$”, Proc. London Math. Soc. (3), 65:1 (1992), 65–84
- Wenguang Zhai, “On higher-power moments of $Delta(x)$. II”, Acta Arith., 114:1 (2004), 35–54
- W. G. Nowak, “On the divisor problem: moments of $Delta(x)$ over short intervals”, Acta Arith., 109:4 (2003), 329–341
- Yuk-Kam Lau, Kai-Man Tsang, “Moments over short intervals”, Arch. Math. (Basel), 84:3 (2005), 249–257
- A. Ivic, P. Sargos, “On the higher moments of the error term in divisor problem”, Illinois J. Math., 51:2 (2007), 353–377
- Д. А. Попов, “Оценки и поведение величин $P(x)$, $Delta(x)$ на коротких интервалах”, Изв. РАН. Сер. матем., 80:6 (2016), 230–246
- M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 186 (1984), 23–30
- A. Ivic, “On the divisor function and the Riemann zeta-function in short intervals”, Ramanujan J., 19:2 (2009), 207–224
- D. R. Heath-Brown, K.-M. Tsang, “Sign changes of $E(T)$, $Delta(x)$ and $P(x)$”, J. Number Theory, 49 (1994), 73–83
- A. Ivic, Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465
- P. M. Bleher, Zheming Cheng, F. J. Dyson, J. L. Lebowitz, “Distribution of the error term for the number of lattice points inside a shifted circle”, Comm. Math. Phys., 154:3 (1993), 433–469
- Yuk-Kam Lau, “On the tails of the limiting distribution function of the error term in the Dirichlet divisor problem”, Acta Arith., 100:4 (2001), 329–337
- J. Steinig, “The changes of sign of certain arithmetical error-terms”, Comment. Math. Helv., 44 (1969), 385–400
- A. Ivic, “Large values of certain number-theoretic error term”, Acta Arith., 56:2 (1990), 135–159
- В. И. Арнольд, А. Авец, Эргодические проблемы классической механики, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 1999, 284 с.
- М. А. Мета, Случайные матрицы, МЦНМО, М., 2012, 648 с.
- P. M. Bleher, “Distribution of energy levels of a quantum free particle on a surface of revolution”, Duke Math. J., 74:1 (1994), 45–93
- Д. В. Косыгин, А. А. Минасов, Я. Г. Синай, “Статистические свойства спектров операторов Лапласа–Бельтрами на поверхностях Лиувилля”, УМН, 48:4(292) (1993), 3–130
- P. M. Bleher, D. V. Kosygin, Ya. G. Sinai, “Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae”, Comm. Math. Phys., 170:2 (1995), 375–403
- Д. А. Попов, “О втором члене в формуле Вейля для спектра оператора Лапласа на двумерном торе и числе целых точек в спектральных областях”, Изв. РАН. Сер. матем., 75:5 (2011), 139–176
- А. Б. Венков, “Спектральная теория автоморфных функций, дзета-функция Сельберга и некоторые проблемы аналитической теории чисел и математической физики”, УМН, 34:3(207) (1979), 69–135
Supplementary files
