Introduction to Heegaard Floer homology
- Authors: Gorsky E.A.1,2,3
-
Affiliations:
- Lomonosov Moscow State University
- International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics
- University of California, Davis
- Issue: Vol 74, No 1 (2019)
- Pages: 3-40
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133548
- DOI: https://doi.org/10.4213/rm9849
- ID: 133548
Cite item
Abstract
About the authors
Evgeny Aleksandrovich Gorsky
Lomonosov Moscow State University; International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics; University of California, DavisCandidate of physico-mathematical sciences, no status
References
- В. И. Арнольд, “О характеристическом классе, входящем в условия квантования”, Функц. анализ и его прил., 1:1 (1967), 1–14
- M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136
- M. F. Atiyah, R. Bott, A. Shapiro, “Clifford modules”, Topology, 3, suppl. 1 (1964), 3–38
- M. Borodzik, M. Hedden, C. Livingston, “Plane algebraic curves of arbitrary genus via Heegaard Floer homology”, Comment. Math. Helv., 92:2 (2017), 215–256
- M. Borodzik, C. Livingston, “Heegaard Floer homology and rational cuspidal curves”, Forum Math. Sigma, 2 (2014), e28, 23 pp.
- M. Borodzik, C. Livingston, “Semigroups, $d$-invariants and deformations of cuspidal singular points of plane curves”, J. Lond. Math. Soc. (2), 93:2 (2016), 439–463
- S. Boyer, A. Clay, “Foliations, orders, representations, L-spaces and graph manifolds”, Adv. Math., 310 (2017), 159–234
- S. Boyer, C. McA. Gordon, L. Watson, “On L-spaces and left-orderable fundamental groups”, Math. Ann., 356:4 (2013), 1213–1245
- S. Boyer, D. Rolfsen, B. Wiest, “Orderable 3-manifold groups”, Ann. Inst. Fourier (Grenoble), 55:1 (2005), 243–288
- A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 125–156
- P. Dehornoy, “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 345:1 (1994), 115–150
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, Panor. Synthèses, 14, Soc. Math. France, Paris, 2002, xiv+190 pp.
- S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, J. Differential Geom., 18:2 (1983), 279–315
- D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp.
- Я. Элиашберг, Л. Трейнор (ред.), Лекции по симплектической геометрии и топологии, МЦНМО, М., 2008, 424 с.
- N. D. Elkies, “A characterization of the $mathbb{Z}^n$ lattice”, Math. Res. Lett., 2:3 (1995), 321–326
- J. Fernandez de Bobadilla, I. Luengo-Velasco, A. Melle-Hernandez, A. Nemethi, “On rational cuspidal projective plane curves”, Proc. London Math. Soc. (3), 92:1 (2006), 99–138
- P. Ghiggini, “Knot Floer homology detects genus-one fibred knots”, Amer. J. Math., 130:5 (2008), 1151–1169
- E. Gorsky, A. Nemethi, “Lattice and Heegaard Floer homologies of algebraic links”, Int. Math. Res. Not. IMRN, 2015:23 (2015), 12737–12780
- E. Gorsky, A. Nemethi, “Links of plane curve singularities are $L$-space links”, Algebr. Geom. Topol., 16:4 (2016), 1905–1912
- H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146:4 (1962), 331–368
- D. V. Gugnin, On integral cohomology ring of symmetric products, 2017 (v1 – 2015), 17 pp.
- A. Haefliger, “Sur l'extension du groupe structural d'un espace fibre”, C. R. Acad. Sci. Paris, 243 (1956), 558–560
- J. Hanselman, “Bordered Heegaard Floer homology and graph manifolds”, Algebr. Geom. Topol., 16:6 (2016), 3103–3166
- J. Hanselman, J. Rasmussen, S. D. Rasmussen, L. Watson, Taut foliations on graph manifolds, 2015, 9 pp.
- J. Hom, “A note on the concordance invariants epsilon and upsilon”, Proc. Amer. Math. Soc., 144:2 (2016), 897–902
- J. Hom, Ç. Karakurt, T. Lidman, “Surgery obstructions and Heegaard Floer homology”, Geom. Topol., 20:4 (2016), 2219–2251
- H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608
- H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry, Princeton Math. Ser., 38, Princeton Univ. Press, Princeton, NJ, 1989, xii+427 pp.
- W. B. R. Lickorish, “A representation of orientable combinatorial 3-manifolds”, Ann. of Math. (2), 76:3 (1962), 531–540
- P. A. Linnell, “Left ordered amenable and locally indicable groups”, J. Lond. Math. Soc. (2), 60:1 (1999), 133–142
- P. Lisca, A. I. Stipsicz, “Ozsvath–Szabo invariants and tight contact 3-manifolds. III”, J. Symplectic Geom., 5:4 (2007), 357–384
- B. Liu, Heegaard Floer homology of $L$-space links with two components, 2017, 23 pp.
- Y. Liu, “$L$-space surgeries on links”, Quantum Topol., 8:3 (2017), 505–570
- I. G. MacDonald, “Symmetric products of an algebraic curve”, Topology, 1 (1962), 319–343
- C. Manolescu, “$operatorname{Pin}(2)$-equivariant Seiberg–Witten Floer homology and the triangulation conjecture”, J. Amer. Math. Soc., 29:1 (2016), 147–176
- C. Manolescu, P. Ozsvath, Heegaard Floer homology and integer surgeries on links, 2017 (v1 – 2010), 231 pp.
- С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, 2-е изд., перераб. и доп., Наука, М., 1998, 304 с.
- Д. Макдафф, Д. Саламон, Введение в симплектическую топологию, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2012, 568 с.
- A. Nemethi, “On the Ozsvath–Szabo invariant of negative definite plumbed 3-manifolds”, Geom. Topol., 9 (2005), 991–1042
- A. Nemethi, “Links of rational singularities, L-spaces and LO fundamental groups”, Invent. Math., 210:1 (2017), 69–83
- Y. Ni, “Knot Floer homology detects fibred knots”, Invent. Math., 170:3 (2007), 577–608
- Y. Ni, Z. Wu, “Heegaard Floer correction terms and rational genus bounds”, Adv. Math., 267 (2014), 360–380
- P. Ozsvath, A. Stipsicz, Z. Szabo, “Concordance homomorphisms from knot Floer homology”, Adv. Math., 315 (2017), 366–426
- P. Ozsvath, Z. Szabo, “Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary”, Adv. Math., 173:2 (2003), 179–261
- P. Ozsvath, Z. Szabo, “On the Floer homology of plumbed three-manifolds”, Geom. Topol., 7 (2003), 185–224
- P. Ozsvath, Z. Szabo, “Heegaard Floer homology and alternating knots”, Geom. Topol., 7 (2003), 225–254
- P. Ozsvath, Z. Szabo, “Knot Floer homology and the four-ball genus”, Geom. Topol., 7 (2003), 615–639
- P. Ozsvath, Z. Szabo, “Holomorphic disks and genus bounds”, Geom. Topol., 8 (2004), 311–334
- P. Ozsvath, Z. Szabo, “Holomorphic disks and knot invariants”, Adv. Math., 186:1 (2004), 58–116
- P. Ozsvath, Z. Szabo, “Holomorphic disks and topological invariants for closed three-manifolds”, Ann. of Math. (2), 159:3 (2004), 1027–1158
- P. Ozsvath, Z. Szabo, “Holomorphic disks and three-manifold invariants: properties and applications”, Ann. of Math. (2), 159:3 (2004), 1159–1245
- P. Ozsvath, Z. Szabo, “Heegaard Floer homology and contact structures”, Duke Math. J., 129:1 (2005), 39–61
- P. Ozsvath, Z. Szabo, “On knot Floer homology and lens space surgeries”, Topology, 44:6 (2005), 1281–1300
- P. Ozsvath, Z. Szabo, “Holomorphic triangles and invariants for smooth four-manifolds”, Adv. Math., 202:2 (2006), 326–400
- P. Ozsvath, Z. Szabo, “Heegaard diagrams and Floer homology”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 1083–1099
- P. Ozsvath, Z. Szabo, “Knot Floer homology and integer surgeries”, Algebr. Geom. Topol., 8:1 (2008), 101–153
- P. Ozsvath, Z. Szabo, “Link Floer homology and the Thurston norm”, J. Amer. Math. Soc., 21:3 (2008), 671–709
- P. Ozsvath, Z. Szabo, “Holomorphic disks, link invariants and the multi-variable Alexander polynomial”, Algebr. Geom. Topol., 8:2 (2008), 615–692
- В. В. Прасолов, А. Б. Сосинский, Узлы, зацепления, косы и трехмерные многообразия, МЦНМО, М., 1997, 352 с.
- S. D. Rasmussen, “L-space intervals for graph manifolds and cables”, Compos. Math., 153:5 (2017), 1008–1049
- J. Rasmussen, S. D. Rasmussen, “Floer simple manifolds and L-space intervals”, Adv. Math., 322 (2017), 738–805
- J. Rasmussen, L. Watson, Floer Homology and low-dimensional topology, 2014, 64 pp.
- K. Reidemeister, “Zur dreidimensionalen Topologie”, Abh. Math. Sem. Univ. Hamburg, 9:1 (1933), 189–194
- M. Scharlemann, “Heegaard splittings of compact 3-manifolds”, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 921–953
- J. Schultens, Introduction to 3-manifolds, Grad. Stud. Math., 151, Amer. Math. Soc., Providence, RI, 2014, x+286 pp.
- R. Seroul, “Anneau de cohomologie entière et $KU^*$-theorie d'un produit symetrique d'une surface de Riemann”, Publ. Dep. Math. (Lyon), 9:4 (1972), 27–66
- J. Singer, “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35:1 (1933), 88–111
- P. A. Smith, “Manifolds with abelian fundamental groups”, Ann. of Math. (2), 37:3 (1936), 526–533
- W. P. Thurston, “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, № 339, Amer. Math. Soc., Providence, RI, 1986, i-vi, 99–130
- V. Turaev, “Torsion invariants of $mathrm{Spin}^c$-structures on 3-manifolds”, Math. Res. Lett., 4:5 (1997), 679–695
- A. H. Wallace, “Modifications and cobounding manifolds”, Canad. J. Math., 12 (1960), 503–528
Supplementary files
