Cytotoxic Activity of Atmospheric Cold Plasma Jet Towards 3D Human Breast Cancer Cell Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The treatment of solid tumors with a cold atmospheric plasma jet (CAP) is an innovative approach, which began to be actively developed only in the last decade. As a consequence, the studies aimed at revealing the conditions of selectivity of such effects on tumor cells, including in 3D tumor models, are important. It is known that the main cytotoxic effects of CAP are caused by reactive oxygen and nitrogen species, which are formed in the plasma flow and the availability of which for the cells in the classical 2D and 3D cultivation models may be different. We used multicellular spheroids of MCF7-EGFR cells with hyperexpression of epidermal growth factor receptor (EGFR), the parental MCF7 breast adenocarcinoma cell line, and MCF10A non-transformed human breast cells. Irradiation of MCF7-EGFR spheroids led to destruction of multicellular 3D structures into individual cells with activation of death processes. It was shown that cells of CAP-irradiated spheroids underwent phagocytosis by activated macrophages. When comparing direct exposure to CAP and cultivation of MCF7-EGFR spheroids in CAP-irradiated medium (CAP-IM), a higher content of reactive oxygen and nitrogen species in spheroid cells was found when cultured in CAP-IM, which further leads to a greater cytotoxic effect than in direct irradiation. The cytotoxicity of CAP-IM has been shown to be valid longer when such medium is stored at 4 than at −20°С. Thus, it was shown that the treatment of spheroids with CAP-IM was more effective in death induction than direct CAP irradiation.

About the authors

E. A. Patrakova

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

M. M. Birykov

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Author for correspondence.
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

O. S. Troitskaya

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

D. D. Novak

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

E. V. Milakhina

Novosibirsk State Technical University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

P. P. Gugin

Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

D. E. Zakrevskyc

Novosibirsk State Technical University; Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

I. V. Schweigert

Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk

O. A. Koval

Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences

Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

References

  1. Нуштаева А.А., Савинкова М.М., Ермаков М.С., Варламов М.Е., Новак Д.Д., Рихтер В.А., Коваль О.А. 2022. Клетки рака молочной железы изменяют чувствительность к гормональным и ростовым стимулам при 3D культивировании. Цитология Т. 64. С. 353. (Nushtaeva A.A., Savinkova M.M., Ermakov M.S., Varlamov M.E., Novak D.D., Richter V. A., Koval O.A. 2022. Breast cancer cells in 3D model alters their sensitivity to hormonal and growth factors. Сell Tiss. Biol. V. 16. P. 555. )https://doi.org/10.1134/S1990519X22060050
  2. Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. 2021. Oxidative stress in cancer cell metabolism. Antioxidants. V. 10. P. 642. https://doi.org/10.3390/antiox10050642
  3. Attri P., Kumar N., Park J.H., Yadav D.K., Choi S., Uhm H.S., Kim I.T., Choi E.H., Lee W. 2015. Influence of reactive species on the modification of biomolecules generated from the soft plasma. Sci. Rep. V. 5. P. 8221. https://doi.org/10.1038/srep08221
  4. Bagamanshina A.V., Troitskaya O.S., Nushtaeva A.A., Yunusova A.Y., Starykovych M.O., Kuligina E.V., Kit Y.Y., Richter M., Wohlfromm F., Kähne T., Lavrik I.N., Richter V.A., Koval O.A. 2019. Cytotoxic and antitumor activity of lactaptin in combination with autophagy inducers and inhibitors. BioMed. Res. Int. V. 2019. https://doi.org/10.1155/2019/4087160
  5. Basu P., Taghavi K., Hu, S.-Y., Mogri S., Joshi S. 2018. Management of cervical premalignant lesions. Curr. Probl. Cancer. V. 42. P. 129. https://doi.org/10.1016/j.currproblcancer.2018.01.010
  6. Boehm D., Heslin C., Cullen P.J., Bourke P. 2016. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci. Rep. V. 6. P. 21464. https://doi.org/10.1038/srep21464
  7. Chauvin J., Judee F., Merbahi N., Vicendo P. 2018. Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response. ACAMC. V. 18. P. 776. https://doi.org/10.2174/1871520617666170801111055
  8. Colombo E., Cattaneo M.G. 2021. Multicellular 3D models to study tumour-stroma interactions. IJMS. V. 22. P. 1633. https://doi.org/10.3390/ijms22041633
  9. Dai X., Bazaka K., Richard D.J., Thompson E.W., Ostrikov K. 2018. The emerging role of gas plasma in oncotherapy. Trends in Biotechnol. V. 36. P. 1183. https://doi.org/10.1016/j.tibtech.2018.06.010
  10. Domonkos M., Tichá P., Trejbal J., Demo P. 2021. Applications of cold atmospheric pressure plasma technology in medicine, Agriculture Food Industry. Applied Sci. V. 11. P. 4809. https://doi.org/10.3390/app11114809
  11. Ferreira L.P., Gaspar V.M., Mano J.F. 2018. Design of spherically structured 3D in vitro tumor models – advances and prospects. Acta Biomat. V. 75. P. 11. https://doi.org/10.1016/j.actbio.2018.05.034
  12. Graves D.B. 2012. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D: Appl. Phys. V. 45. P. 263001. https://doi.org/10.1088/0022-3727/45/26/263001
  13. Judée F., Fongia C., Ducommun B., Yousfi M., Lobjois V., Merbahi N. 2016. Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci. Rep. V. 6. P. 21421. https://doi.org/10.1038/srep21421
  14. Klinkhammer C., Verlackt C., Smiłowicz D., Kogelheide F., Bogaerts A., Metzler-Nolte N., Stapelmann K., Havenith M., Lackmann J.-W. 2017. Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide. Sci. Rep. V. 7. P. 13828. https://doi.org/10.1038/s41598-017-13041-8
  15. Laschke M.W., Menger M.D. 2017. Spheroids as vascularization units: from angiogenesis research to tissue engineering applications. Biotechnol. Advances. V. 35. P. 782. https://doi.org/10.1016/j.biotechadv.2017.07.002
  16. Metelmann H.-R., Nedrelow, D.S., Seebauer, C., Schuster, M., von Woedtke, T., Weltmann, K.D., Kindler S., Metelmann P.H., Finkelstein S.E., Von Hoff D.D., Podmelle F. 2015. Head and neck cancer treatment and physical plasma. Clinical Plasma Med. V. 3. P. 17. https://doi.org/10.1016/j.cpme.2015.02.001
  17. Qu Y., Han B., Yu Y., Yao W., Bose S., Karlan B.Y., Giuliano A.E., Cui X. 2015. Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS One. V. 10. P. e0131285. https://doi.org/10.1371/journal.pone.0131285
  18. Salinas-Vera Y.M., Valdés J., Hidalgo-Miranda A., Cisneros-Villanueva M., Marchat L.A., Nuñez-Olvera S.I., Ramos-Payán R., Pérez-Plasencia C., Arriaga-Pizano L.A., Prieto-Chávez J.L., López-Camarillo C. 2022. Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells. Cancers. V. 14. P. 2490. https://doi.org/10.3390/cancers14102490
  19. Schweigert I., Alexandrov A., Zakrevsky D., Milakhina E., Patrakova E., Troitskaya O., Birykov M., Koval O. 2021. Mismatch of frequencies of ac voltage and streamers propagation in cold atmospheric plasma jet for typical regimes of cancer cell treatment. J. Phys.: Conf. Ser. V. 2100. P. 012020. https://doi.org/10.1088/1742-6596/2100/1/012020
  20. Schweigert I., Zakrevsky D., Gugin P., Yelak E., Golubitskaya E., Troitskaya O., Koval O.: 2019. Interaction of cold atmospheric argon and helium plasma jets with bio-target with grounded substrate beneath. Applied Sci. V. 9. P. 4528. https://doi.org/10.3390/app9214528
  21. Semmler M.L., Bekeschus S., Schäfer M., Bernhardt T., Fischer T., Witzke K., Seebauer C., Rebl H., Grambow E., Vollmar B., Nebe J.B., Metelmann H.-R., Woedtke T. von, Emmert S., Boeckmann L. 2020. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers. V. 12. P. 269. https://doi.org/10.3390/cancers12020269
  22. Shashurin A., Stepp M.A., Hawley T.S., Pal-Ghosh S., Brieda L., Bronnikov S., Jurjus R.A., Keidar, M. 2010. Influence of Cold plasma atmospheric jet on surface integrin expression of living cells: influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Processes Polym. V. 7. P. 294. https://doi.org/10.1002/ppap.200900086
  23. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomatara, I., Jemal A., Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. V. 71. P. 209. https://doi.org/10.3322/caac.21660
  24. Tanaka H., Bekeschus S., Yan D., Hori M., Keidar M., Laroussi M. 2021. Plasma-treated solutions (PTS) in cancer therapy. Cancers. V. 13. P. 1737. https://doi.org/10.3390/cancers13071737
  25. Troitskaya O., Golubitskaya E., Biryukov M., Varlamov M., Gugin P., Milakhina E., Richter V., Schweigert I., Zakrevsky D., Koval O. 2020. Non-thermal plasma application in tumor-bearing mice induces increase of serum HMGB1. Int. J. Mol. Sci. V. 21. P. E5128. https://doi.org/10.3390/ijms21145128
  26. Troitskaya O., Novak D., Nushtaeva A., Savinkova M., Varlamov M., Ermakov M., Richter V., Koval O. 2021. EGFR Transgene stimulates spontaneous formation of MCF7 breast cancer cells spheroids with partly loss of HER3 receptor. IJMS. V. 22. P. 12 937. https://doi.org/10.3390/ijms222312937
  27. Vandamme M., Robert E., Lerondel S., Sarron V., Ries D., Dozias S., Sobilo J., Gosset D., Kieda C., Legrain B., Pouvesle J.-M., Pape A.L. 2012. ROS implication in a new antitumor strategy based on non-thermal plasma. Int. J. Cancer. V. 130. P. 2185. https://doi.org/10.1002/ijc.26252
  28. Verjans E.-T., Doijen J., Luyten W., Landuyt B., Schoofs L. 2018. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? J. Cell Physiol. V. 233. P. 2993. https://doi.org/10.1002/jcp.26052
  29. Wanigasekara J., Barcia C., Cullen P.J., Tiwari B., Curtin J.F. 2022. Plasma induced reactive oxygen species-dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Processes Polymers. V. 19. P. 2100157. https://doi.org/10.1002/ppap.202100157
  30. Wiegand C., Fink S., Beier O., Horn K., Pfuch A., Schimanski A., Grünler B., Hipler U.-C., Elsner P. 2016. Dose- and time-dependent cellular effects of cold atmospheric pressure plasma evaluated in 3D skin models. Skin Pharmacol. Physiol. V. 29. P. 257. https://doi.org/10.1159/000450889
  31. Xu D., Wang B., Xu Y., Chen Z., Cui Q., Yang Y., Chen H., Kong M.G. 2016. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures. Sci. Rep. V. 6. P. 27872. https://doi.org/10.1038/srep27872
  32. Yazdani M. 2015. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. Toxicol. in Vitro. V. 30. P. 578. https://doi.org/10.1016/j.tiv.2015.08.010
  33. Yousfi M., Merbahi N., Pathak A., Eichwald O. 2014. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol. V. 28. P. 123. https://doi.org/10.1111/fcp.12018

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (381KB)
3.

Download (128KB)
4.

Download (86KB)
5.

Download (79KB)
6.

Download (3MB)
7.

Download (302KB)
8.

Download (1003KB)
9.

Download (2MB)

Copyright (c) 2023 Е.А. Патракова, М.М. Бирюков, О.С. Троицкая, Д.Д. Новак, Е.В. Милахина, П.П. Гугин, Д.Э. Закревский, И.В. Швейгерт, О.А. Коваль

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies