Osteogenic Differentiation in vitro off Human Osteoblasts is Associated with Only Slight Shift in Their Proteomics Profile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fracture healing is a complex process in which the periosteum and endosteum become the main sources of osteoblast progenitor cells. However, cellular mechanisms and signaling cascades underlying the early stages of osteoblast progenitors differentiation in adult bone are still not well understood. Therefore, we performed shotgun proteomics analysis of primary culture of isolated human osteoblasts from femur of adult donors in undifferentiated conditions and on the sixth day of osteogenic differentiation in vitro. This is an early timepoint in which we have observed no extracellular matrix mineralization yet. 1612 proteins identified with at least two unique peptides were included in proteomics analysis. Data are available via ProteomeXchange with identifier PXD033697. Despite the fact, that matrix mineralization starts only after induction of osteogenic differentiation, we revealed unexpectedly weak physiological shift associated with a decrease of cells proliferative activity and changes in proteins inVved in extracellular matrix secretion and organization. We demonstrated that osteoblasts were positive for markers of later osteogenic differentiation stages during standard cultivation: osteopontin, osteocalcin, BMP-2/4 and RUNX2. Therefore, further differentiation required for matrix mineralization needs minimal physiological changes.

About the authors

I. A. Khvorova

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Email: lobov@incras.ru
Russia, 194064, St. Petersburg

A. B. Malashicheva

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Email: lobov@incras.ru
Russia, 194064, St. Petersburg

V. V. Karelkin

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: lobov@incras.ru
Russia, 195427, St. Petersbur

A. P. Sereda

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: lobov@incras.ru
Russia, 195427, St. Petersbur

S. A. Bozhkova

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: lobov@incras.ru
Russia, 195427, St. Petersbur

R. M. Tikhilov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: lobov@incras.ru
Russia, 195427, St. Petersbur

E. S. Gromova

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Email: lobov@incras.ru
Russia, 194064, St. Petersburg

E. A. Fefilova

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Email: lobov@incras.ru
Russia, 194064, St. Petersburg

B. R. Zainullina

Resource Centre for Molecular and Cell Technologies, St. Petersburg State University

Email: lobov@incras.ru
Russia, 199034, St. Petersburg

D. A. Kostina

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Email: lobov@incras.ru
Russia, 194064, St. Petersburg

A. A. Lobov

Laboratory of Regenerative Biology, Institute of Cytology of the Russian Academy of Sciences

Author for correspondence.
Email: lobov@incras.ru
Russia, 194064, St. Petersburg

References

  1. Bahney C., Zondervan R., Allison P., Theologis A., Ashley J., Ahn J., Miclau T., Marcucio R., Hankenson K. 2019. Cellular biology of fracture healing. J. Orthop. Res. V. 37. P. 35. https://doi.org/10.1002/jor.24170
  2. Blighe K., Sharmila R., Myles L. 2022. EnhancedVcano: publication-ready Vcano plots with enhanced colouring and labeling. https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVcano/inst/doc/EnhancedVcano.html
  3. Bragdon B., Bahney C. 2018. Origin of reparative stem cells in fracture healing, Curr. Osteoporos. Rep. V. 16. P. 490. https://doi.org/10.1007/s11914-018-0458-4
  4. Cleland T., Vashishth D. 2015. Bone protein extraction without demineralization utilizing principles from hydroxyapatite chromatography. Anal. Biochem. V. 472. P. 62. https://doi.org/10.1016/j.ab.2014.12.006
  5. Cleland T., Voegele K., Schweitzer M. 2012. Empirical evaluation of bone extraction protocols. PLoS One. V. 7. P. e31443. https://doi.org/10.1371/journal.pone.0031443
  6. Florencio-Silva R., Sasso G., Sasso-Cerri E., Simões M., Cerri P. 2015. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed. Res. Int. V. 2015. P. e421746. https://doi.org/10.1155/2015/421746
  7. Hastie T., Tibshirani R., Narasimhan B., Chu G. 2022. Impute: imputation for microarray data. Bioconductor version: Release (3.14). https://www.bioconductor.org/packages/release/bioc/html/impute.html
  8. Jiang X., Ye M., Jiang X., Liu G., Feng S., Cui L., Zou H. 2007. Method development of efficient protein extraction in bone tissue for proteome analysis. J. Proteome Res. V. 6. P. 2287. https://doi.org/10.1021/pr070056t
  9. Lobov A., Malashicheva A. 2022. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? Bio. Comm. V. 67. P. 32. https://doi.org/10.21638/spbu03.2022.104
  10. Matthews B., Novak S., Sbrana F., Funnell J., Cao Y., Buckels E., Grcevic D., Kalajzic I. 2021. Heterogeneity of murine periosteum progenitors inVved in fracture healing. Elife. V. 10. P. e58534. https://doi.org/10.7554/eLife.58534
  11. Perez-Riverol Y., Bai J.; Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., Walzer M., Wang S., Brazma A., Vizcaíno J.A. 2022. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. V. 50. D543–D552. https://doi.org/10.1093/nar/gkab1038
  12. Pitkänen S. 2020. In vitro and in vivo osteogenesis and vasculogenesis in synthetic bone grafts. Doctoral dissertation: Tampere University.
  13. Raouf A., Ganss B., McMahon C., Vary C., Roughley P., Seth A. 2002. Lumican is a major proteoglycan component of the bone matrix. Matrix Biol. V. 21. P 361. https://doi.org/10.1016/s0945-053x(02)00027-6
  14. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. V. 43. P. e47. https://doi.org/10.1093/nar/gkv007
  15. Rohart F., Gautier B., Singh A., Cao K. 2017. mixOmics: an R package for ‘omics’ feature selection and multiple data integration. PLoS Comput. Biol. V. 13. P. e1005752. https://doi.org/10.1371/journal.pcbi.1005752
  16. Rutkovskiy A., Stensløkken K., Vaage I. 2016. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. V. 22. P. 95. https://doi.org/10.12659/MSMBR.901142
  17. Wickham H. 2016. ggplot2. Cham: Springer Int. Publishing.
  18. Yan L. 2021. ggvenn: Draw Venn Diagram by “ggplot2”. https://cran.r-project.org/web/packages/ggvenn/

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (342KB)

Copyright (c) 2023 И.А. Хворова, Д.А. Костина, Б.Р. Зайнуллина, Е.А. Фефилова, Е.С. Громова, Р.М. Тихилов, С.А. Божкова, А.П. Середа, В.В. Карелкин, А.Б. Малашичева, А.А. Лобов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies