Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber
- Авторы: Dobrokhotov S.Y.1,2, Minenkov D.S.1, Shlosman S.B.3,4,5
-
Учреждения:
- Ishlinsky Institute for Problems of Mechanics
- Moscow Institute of Physics and Technology (State University)
- Skolkovo Institute for Science and Technology
- Aix Marseille Université, Université de Toulon, CNRS, CPT
- Kharkevich Institute for Information Transmission Problems, RAS
- Выпуск: Том 197, № 2 (2018)
- Страницы: 1626-1634
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171990
- DOI: https://doi.org/10.1134/S0040577918110065
- ID: 171990
Цитировать
Аннотация
We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form \(U\left( x \right) = \sum _{j = 1}^nV\left( {{x_j}} \right),x = \left( {{x_1}, \ldots ,{x_n}} \right) \in {\mathbb{R}^n}\), with a monotonically increasing function V (y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on xj. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
Об авторах
S. Dobrokhotov
Ishlinsky Institute for Problems of Mechanics; Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: dobr@ipmnet.ru
Россия, Moscow; Dolgoprudny
D. Minenkov
Ishlinsky Institute for Problems of Mechanics
Email: dobr@ipmnet.ru
Россия, Moscow
S. Shlosman
Skolkovo Institute for Science and Technology; Aix Marseille Université, Université de Toulon, CNRS, CPT; Kharkevich Institute for Information Transmission Problems, RAS
Email: dobr@ipmnet.ru
Россия, Moscow; Marseille; Moscow
Дополнительные файлы
