Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form \(U\left( x \right) = \sum _{j = 1}^nV\left( {{x_j}} \right),x = \left( {{x_1}, \ldots ,{x_n}} \right) \in {\mathbb{R}^n}\), with a monotonically increasing function V (y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on xj. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.

Sobre autores

S. Dobrokhotov

Ishlinsky Institute for Problems of Mechanics; Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: dobr@ipmnet.ru
Rússia, Moscow; Dolgoprudny

D. Minenkov

Ishlinsky Institute for Problems of Mechanics

Email: dobr@ipmnet.ru
Rússia, Moscow

S. Shlosman

Skolkovo Institute for Science and Technology; Aix Marseille Université, Université de Toulon, CNRS, CPT; Kharkevich Institute for Information Transmission Problems, RAS

Email: dobr@ipmnet.ru
Rússia, Moscow; Marseille; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018