🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form \(U\left( x \right) = \sum _{j = 1}^nV\left( {{x_j}} \right),x = \left( {{x_1}, \ldots ,{x_n}} \right) \in {\mathbb{R}^n}\), with a monotonically increasing function V (y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on xj. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.

Sobre autores

S. Dobrokhotov

Ishlinsky Institute for Problems of Mechanics; Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: dobr@ipmnet.ru
Rússia, Moscow; Dolgoprudny

D. Minenkov

Ishlinsky Institute for Problems of Mechanics

Email: dobr@ipmnet.ru
Rússia, Moscow

S. Shlosman

Skolkovo Institute for Science and Technology; Aix Marseille Université, Université de Toulon, CNRS, CPT; Kharkevich Institute for Information Transmission Problems, RAS

Email: dobr@ipmnet.ru
Rússia, Moscow; Marseille; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018