Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form \(U\left( x \right) = \sum _{j = 1}^nV\left( {{x_j}} \right),x = \left( {{x_1}, \ldots ,{x_n}} \right) \in {\mathbb{R}^n}\), with a monotonically increasing function V (y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on xj. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.

Авторлар туралы

S. Dobrokhotov

Ishlinsky Institute for Problems of Mechanics; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny

D. Minenkov

Ishlinsky Institute for Problems of Mechanics

Email: dobr@ipmnet.ru
Ресей, Moscow

S. Shlosman

Skolkovo Institute for Science and Technology; Aix Marseille Université, Université de Toulon, CNRS, CPT; Kharkevich Institute for Information Transmission Problems, RAS

Email: dobr@ipmnet.ru
Ресей, Moscow; Marseille; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018