Bound states of a two-boson system on a two-dimensional lattice
- 作者: Abdullaev Z.I.1, Kuliev K.D.1
-
隶属关系:
- Faculty of Mechanics and Mathematics
- 期: 卷 186, 编号 2 (2016)
- 页面: 231-250
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170411
- DOI: https://doi.org/10.1134/S0040577916020082
- ID: 170411
如何引用文章
详细
We consider a Hamiltonian of a two-boson system on a two-dimensional lattice Z2. The Schrödinger operator H(k1, k2) of the system for k1 = k2 = π, where k = (k1, k2) is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of H(π,π) splits into two nondegenerate eigenvalues of H(π, π − 2β) for small β > 0 and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of β2 and also an explicit form of the eigenfunctions of H(π, π −2β) for these eigenvalues.
作者简介
Zh. Abdullaev
Faculty of Mechanics and Mathematics
编辑信件的主要联系方式.
Email: jabdullaev@mail.ru
乌兹别克斯坦, Samarkand
K. Kuliev
Faculty of Mechanics and Mathematics
Email: jabdullaev@mail.ru
乌兹别克斯坦, Samarkand
补充文件
