Bound states of a two-boson system on a two-dimensional lattice


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a Hamiltonian of a two-boson system on a two-dimensional lattice Z2. The Schrödinger operator H(k1, k2) of the system for k1 = k2 = π, where k = (k1, k2) is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of H(π,π) splits into two nondegenerate eigenvalues of H(π, π − 2β) for small β > 0 and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of β2 and also an explicit form of the eigenfunctions of H(π, π −2β) for these eigenvalues.

作者简介

Zh. Abdullaev

Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: jabdullaev@mail.ru
乌兹别克斯坦, Samarkand

K. Kuliev

Faculty of Mechanics and Mathematics

Email: jabdullaev@mail.ru
乌兹别克斯坦, Samarkand

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016