Bound states of a two-boson system on a two-dimensional lattice


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a Hamiltonian of a two-boson system on a two-dimensional lattice Z2. The Schrödinger operator H(k1, k2) of the system for k1 = k2 = π, where k = (k1, k2) is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of H(π,π) splits into two nondegenerate eigenvalues of H(π, π − 2β) for small β > 0 and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of β2 and also an explicit form of the eigenfunctions of H(π, π −2β) for these eigenvalues.

Sobre autores

Zh. Abdullaev

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: jabdullaev@mail.ru
Uzbequistão, Samarkand

K. Kuliev

Faculty of Mechanics and Mathematics

Email: jabdullaev@mail.ru
Uzbequistão, Samarkand

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016