Bound states of a two-boson system on a two-dimensional lattice


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a Hamiltonian of a two-boson system on a two-dimensional lattice Z2. The Schrödinger operator H(k1, k2) of the system for k1 = k2 = π, where k = (k1, k2) is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of H(π,π) splits into two nondegenerate eigenvalues of H(π, π − 2β) for small β > 0 and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of β2 and also an explicit form of the eigenfunctions of H(π, π −2β) for these eigenvalues.

Авторлар туралы

Zh. Abdullaev

Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: jabdullaev@mail.ru
Өзбекстан, Samarkand

K. Kuliev

Faculty of Mechanics and Mathematics

Email: jabdullaev@mail.ru
Өзбекстан, Samarkand

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016