Bound states of a two-boson system on a two-dimensional lattice
- Авторлар: Abdullaev Z.I.1, Kuliev K.D.1
-
Мекемелер:
- Faculty of Mechanics and Mathematics
- Шығарылым: Том 186, № 2 (2016)
- Беттер: 231-250
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170411
- DOI: https://doi.org/10.1134/S0040577916020082
- ID: 170411
Дәйексөз келтіру
Аннотация
We consider a Hamiltonian of a two-boson system on a two-dimensional lattice Z2. The Schrödinger operator H(k1, k2) of the system for k1 = k2 = π, where k = (k1, k2) is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of H(π,π) splits into two nondegenerate eigenvalues of H(π, π − 2β) for small β > 0 and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of β2 and also an explicit form of the eigenfunctions of H(π, π −2β) for these eigenvalues.
Авторлар туралы
Zh. Abdullaev
Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: jabdullaev@mail.ru
Өзбекстан, Samarkand
K. Kuliev
Faculty of Mechanics and Mathematics
Email: jabdullaev@mail.ru
Өзбекстан, Samarkand
Қосымша файлдар
